[1]涂正楠,吴羿君,冯 君*,等.基于FEM-SPH耦合方法的挡土墙墙后土体变形破损研究[J].山地学报,2023,(2):243-253.[doi:10.16089/j.cnki.1008-2786.000745]
 TU Zhengnan,WU Yijun,FENG Jun*,et al.Damage Analysis of Soil behind Retaining Wall Based on FEM-SPH Coupling Method[J].Mountain Research,2023,(2):243-253.[doi:10.16089/j.cnki.1008-2786.000745]
点击复制

基于FEM-SPH耦合方法的挡土墙墙后土体变形破损研究
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第2期
页码:
243-253
栏目:
山地灾害
出版日期:
2023-03-25

文章信息/Info

Title:
Damage Analysis of Soil behind Retaining Wall Based on FEM-SPH Coupling Method
文章编号:
1008-2786-(2023)2-243-11
作者:
涂正楠吴羿君冯 君*罗晗玲杨 涛
(西南交通大学 土木工程学院,成都 610031)
Author(s):
TU ZhengnanWU YijunFENG Jun*LUO HanlingYANG Tao
(School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China)
关键词:
光滑粒子流体动力学 挡土墙 模型试验 数值模拟 裂缝衍生
Keywords:
smoothed particle hydrodynamics retaining wall model test numerical simulation fracture derivation
分类号:
TU411.93
DOI:
10.16089/j.cnki.1008-2786.000745
文献标志码:
A
摘要:
挡土墙发生较大位移时,墙后土体往往出现裂缝,应用传统有限元法(FEM)计算墙后土体受力变形时存在困难。FEM-SPH的耦合方法结合了FEM的高精度、高效率和SPH粒子处理大变形的能力,可以较好地模拟裂缝的衍生与发展演化。本文介绍了SPH方法的基本原理与FEM-SPH的耦合方法,使用FEM-SPH自适应耦合算法对平动位移模式下挡土墙墙后土体的裂缝衍生与墙后土压力进行了三维数值计算,并与试验结果进行了对比,结果表明:(1)FEM-SPH方法可以较好地模拟挡土墙墙后土体的裂缝衍生;(2)墙后滑坡推力峰值在距离墙顶2/3处;(3)挡土墙平动模式下,张拉裂缝与剪切裂缝交替出现,张拉裂缝的出现由远挡墙向近挡墙的顺序衍生,剪切裂缝的出现由土体下端向上端的顺序衍生。研究结果可以为解决岩土体大变形问题提供新的思路。
Abstract:
When a retaining wall experiences significant displacement, cracks often develop in the backfill soil, posing challenges for traditional finite element method(FEM)simulations of the soil's stress and deformation. The coupling of FEM with smoothed particle hydrodynamics(SPH), known as FEM-SPH, combines the high precision and efficiency of FEM with the ability of SPH particles to handle large deformations, enabling effective modeling of crack initiation, propagation, and evolution. This paper presented the fundamental principles of the SPH method and the coupling approach of FEM-SPH. A three-dimensional numerical computation was conducted using the FEM-SPH adaptive coupling algorithm to simulate crack development in the backfill soil and the associated wall pressure in a translational displacement mode of a retaining wall. The numerical results were compared with experimental data, with the following conclusions:(1)The FEM-SPH method can effectively simulate crack initiation and propagation in the backfill soil of a retaining wall.(2)The peak thrust of backfill landslide occurred at approximately 2/3 of the distance from the top of the wall.(3)Under the translational displacement mode of the retaining wall, tensile cracks and shear cracks occurred alternately, with tensile cracks propagating sequentially from the far wall to the near wall, while shear cracks propagated from the bottom to the top of the soil mass. These findings provide new insights for addressing significant deformations in geotechnical engineering of soil structures.

参考文献/References:

[1] 王鸿兴, 孙大庆. 挡土墙后土体滑裂面及土压力变分法初探[J]. 岩土工程学报, 1989, 11(3): 86-93. [WANG Hongxing, SUN Daqing. Preliminary study on soil slip fracture surface and earth pressure variational method after retaining wall [J]. Chinese Journal of Geotechnical Engineering, 1989, 11(3): 86-93]
[2] 党发宁, 张乐, 王旭, 等. 基于弹性理论的有限位移条件下挡土墙上土压力解析[J]. 岩石力学与工程学报, 2020, 39(10): 2094-2103. [DANG Faning, ZHANG Le, WANG Xu, et al. Analysis of earth pressure on retaining walls with limited displacement based on elastic theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2094-2103] DOI: 10.13722/j.cnki.jrme.2020.0106
[3] 牟太平, 孙伟, 邱志雄, 等. 基于有限元—近场动力学耦合方法的挡土墙变形破损分析[J]. 中山大学学报(自然科学版)(中英文), 2022, 61(6): 158-165. [MOU Taiping, SUN Wei, QIU Zhixiong, et al. Damage analysis of the retaining wall based on the FEM-Peridynamics coupling method [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2022, 61(6): 158-165] DOI: 10.13471/j.cnki.acta.snus.2021B101
[4] 周健, 彭述权, 樊玲. 刚性挡土墙主动土压力颗粒流模拟[J]. 岩土力学, 2008, 29(3): 629-632+638. [ZHOU Jian, PENG Shuquan, FAN Ling. Particle flow simulation of active earth pressure distribution on rigid retaining wall [J]. Rock and Soil Mechanics, 2008, 29(3): 629-632+638] DOI: 10.16285/j.rsm.2008.03.040
[5] BENMEBAREK S, KHELIFA T, BENMEBAREK N, et al. Numerical evaluation of 3D passive earth pressure coefficients for retaining wall subjected to translation [J]. Computers and Geotechnics, 2008, 35(1): 47-60. DOI: 10.1016/j.compgeo.2007.01.008
[6] NADUKURU S S, MICHALOWSKI R L. Arching in distribution of active load on retaining walls [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(5): 575-584. DOI: 10.1061/(ASCE)GT.1943-5606.0000617
[7] 杨山奇, 卢坤林, 史克宝, 等. 刚性挡土墙后三维被动滑裂面的模型试验[J]. 岩土力学, 2018, 39(9): 3303-3312. [YANG Shanqi, LU Kunlin, SHI Kebao, et al. Model tests on 3D slip surface of passive failure behind a rigid retaining wall [J]. Rock and Soil Mechanics, 2018, 39(9): 3303-3312] DOI: 10.16285/j.rsm.2016.2603
[8] 顾慰慈, 武全社, 陈卫平. 挡土墙墙背填土中滑裂体形状的试验研究[J]. 岩土工程学报, 1988, 10(2): 49-56. [GU Weici, WU Quanshe, CHEN Weiping. Experimental study on the shape of slip fracture in the back fill of retaining wall [J]. Chinese Journal of Geotechnical Engineering, 1988, 10(2): 49-56]
[9] 彭翀, 袁会娜, 张丙印. 无网格自动加密方法及其在土体裂缝分析中的应用[J]. 工程力学, 2013, 30(6): 231-235+253. [PENG Chong, YUAN Huina, ZHANG Bingyin. Automatic node refinement for meshfree method and its application in soil crack analysis [J]. Engineering Mechanics, 2013, 30(6): 231-235+253] DOI: 10.6052/j.issn.1000-4750.2012.03.0145
[10] 张琰. 高土石坝张拉裂缝开展机理研究与数值模拟[D]. 北京: 清华大学, 2009: 140-159. [ZHANG Yan. Mechanism study and numerical simulation of tensile crack propagation in high earth and rockfill dam [D]. Beijing: Tsinghua University, 2009: 140-159]
[11] MAIR H U. Review: Hydrocodes for structural response to underwater explosions [J]. Shock and Vibration, 1999, 6(2): 81-96.
[12] BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear finite elements for continua and structures [M]. New York: John Wiley and Sons, 2000: 341-350.
[13] GOODIN C, PRIDDY J D. Comparison of SPH simulations and cone index tests for cohesive soils [J]. Journal of Terramechanics, 2016, 66: 49-57. DOI: 10.1016/j.jterra.2015.09.002
[14] LIANG Dongfang, HE Xuzhen. A comparison of conventional and shear-rate dependent Mohr-Coulomb models for simulating landslides [J]. Journal of Mountain Science, 2014, 11(6): 1478-1490. DOI: 10.1007/s11629-014-3041-1
[15] BUI H H, SAKO K, FUKAGAWA R. Numerical simulation of soil-water interaction using smoothed particle hydrodynamics(SPH)method [J]. Journal of Terramechanics, 2007, 44(5): 339-346. DOI: 10.1016/j.jterra.2007.10.003
[16] ZHANG Zhongya, JIN Xiaoguang, BI Jing. Development of an SPH-based method to simulate the progressive failure of cohesive soil slope [J]. Environmental Earth Sciences, 2019, 78: 537. DOI: 10.1007/s12665-019-8507-6
[17] WANG Haibin, FEI Yan, ZHANG Liwei, et al. Mechanism and flow process of debris avalanche in mining waste dump based on improved SPH simulation [J]. Engineering Failure Analysis, 2022, 138: 106345. DOI: 10.1016/j.engfailanal.2022.106345
[18] NETO A H F, ASKARINEJAD A, SPRINGMAN S M, et al. Simulation of debris flow on an instrumented test slope using an updated lagrangian continuum particle method [J]. Acta Geotechnica, 2020, 15(5): 2757-2777. DOI: 10.1007/s11440-020-00957-1
[19] DAI Zili, HUANG Yu, CHENG Hualin, et al. 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake [J]. Engineering Geology, 2014, 180: 21-33. DOI: 10.1016/j.enggeo.2014.03.018
[20] 胡嫚, 谢谟文, 王立伟. 基于弹塑性土体本构模型的滑坡运动过程SPH模拟[J]. 岩土工程学报, 2016, 38(1): 58-67. [HU Man, XIE Mowen, WANG Liwei. SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 58-67] DOI: 10.11779/CJGE201601005
[21] HUANG Yu, ZHANG Weijie, XU Qiang, et al. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics [J]. Landslides, 2012,9(2): 275-283. DOI: 10.1007/s10346-011-0285-5
[22] 陈诚, 詹发民, 周方毅, 等. 基于SPH-FEM算法的钢板接触爆破数值模拟研究[J]. 计算机仿真, 2022, 39(8): 6-9. [CHEN Cheng, ZHAN Famin, ZHOU Fangyi, et al. Study on numerical simulation of steel plate contact blasting based on SPH-FEM algorithm [J]. Computer Simulation, 2022, 39(8): 6-9]
[23] 马上, 王振清, 陈叶青, 等. 基于FEM-SPH方法的水下爆炸重力坝数值模型构建[J]. 防护工程, 2022,44(2): 22-29. [MA Shang, WANG Zhenqing, CHEN Yeqing, et al. Construction of underwater explosion gravity dam numerical model based on FEM-SPH method [J]. Protective Engineering, 2022, 44(2): 22-29]
[24] 王翔宇, 李志雨, 孙树政, 等. 基于SPH-FEM方法的舷侧与冰山碰撞结构响应[J]. 船舶工程, 2023,45(1): 56-62. [WANG Xiangyu, LI Zhiyu, SUN Shuzheng, et al. Structural response of shipboard iceberg collision based on SPH-FEM method [J]. Ship Engineering, 2023, 45(1): 56-62] DOI: 10.13788/j.cnki.cbgc.2023.01.09
[25] LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal, 1977, 82(12): 1013-1024.
[26] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars [J]. Mon. Not. R. Astron. Soc., 1977, 181: 375-389.
[27] LIU G R, LIU M B. 光滑粒子流体动力学——一种无网格粒子法[M]. 韩旭, 杨刚, 强洪夫, 译. 长沙: 湖南大学出版社, 2005: 37-45. [LIU G R, LIU M B. Smoothed particle hydrodynamics: A meshless particle method [M]. HAN Xu, YANG Gang, QIANG Hongfu, translated.Changsha: Hunan University Press, 2005: 37-45]
[28] MONAGHAN J J, LATTANZIO J C. A refined particle method for astrophysical problems [J]. Astronomy and Astrophysics, 1985, 149: 135-143.
[29] MONAGHAN J J. Simulating free surface flows with SPH [J]. Journal of Computational Physics, 1994, 110(2): 399-406.
[30] LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response [J]. Journal of Computational Physics, 1993, 109(1): 67-75.
[31] MORRIS J P, FOX P J, ZHU Y. Modeling low reynolds number incompressible flows using SPH [J]. Journal of Computational Physics, 1997, 136(1): 214-226.
[32]张志春, 强洪夫, 高巍然. SPH-FEM接触算法在冲击动力学数值计算中的应用[J]. 固体力学学报, 2011, 32(3): 319-324. [ZHANG Zhichun, QIANG Hongfu, GAO Weiran. Application of SPH-FEM contact algorithm in impact dynamics simulation [J]. Chinese Journal of Solid Mechanics, 2011, 32(3): 319-324] DOI: 10.19636/j.cnki.cjsm42-1250/o3.2011.03.014
[33] VIGNJEVIC R, DE VUYST T, CAMPBELL J C. A frictionless contact algorithm for meshless methods [J]. Computer Modeling in Engineering and Sciences, 2006, 13(1): 35-47.
[34] 费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2010: 219-220. [FEI Kang, ZHANG Jianwei. Application of ABAQUS in geotechnical engineering [M]. Beijing: China Water Resources and Hydropower Press, 2010: 219-220]
[35] STYLES T D, COGGAN J S, PINE R J. Back analysis of the Joss Bay Chalk Cliff Failure using numerical modelling [J]. Engineering Geology, 2011, 120: 81-90. DOI: 10.1016/j.enggeo.2011.04.004
[36] BOUISSOU S, DARNAULT R, CHEMENDA A, et al. Evolution of gravity-driven rock slope failure and associated fracturing: Geological analysis and numerical modelling [J]. Tectonophysics, 2012(526-529): 157-166. DOI: 10.1016/j.tecto.2011.12.010
[37] SCHOLTES L, DONZE F V. Modelling progressive failure in fractured rock masses using a 3D discrete element method [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52: 18-30. DOI: 10.1016/j.ijrmms.2012.02.009

备注/Memo

备注/Memo:
收稿日期(Received date):2022-10-24; 改回日期(Accepted date): 2023-03-03
基金项目(Foundation item): 四川省交通运输科技项目(2021-A-02); 四川省科技计划项目(2020YFG0123, 2021YFS0323)。[Sichuan Transportation Science and Technology Project(2021-A-02); Science and Technology Program of Sichuan Province(2020YFG0123, 2021YFS0323)]
作者简介(Biography): 涂正楠(1998-),男,重庆江津人,硕士研究生,主要研究方向:岩土工程数值模拟。[TU Zhengnan(1998-), male, born in Jiangjin, Chongqing province, M.Sc. candidate, research on numerical calculation of geotechnical engineering] E-mail: 897886062@qq.com
*通讯作者(Corresponding author): 冯君(1977-)男,四川渠县人,博士,副教授,主要研究方向:岩土力学与边坡工程。[FENG Jun(1977-), male, born in Quxian, Sichuan province, Ph.D., associate professor, research on geotechnical mechanics and slope engineering] E-mail: fengjun4316@163.com
更新日期/Last Update: 2023-03-30