参考文献/References:
[1] SCHOENBOHM L M, WHIPPLE K X, BURCHFIEL B C, et al. Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan province, China [J]. Geological Society of America Bulletin, 2004, 116(7-8): 895-909. DOI: 10.1130/B25364.1
[2] NEELY A B, BOOKHAGEN B, BURBANK D W. An automated knickzone selection algorithm(KZ-Picker)to analyze transient landscapes: Calibration and validation [J]. Journal of Geophysical Research: Earth Surface, 2017, 122(6): 1236-1261. DOI: 10.1002/2017JF004250
[3] SHI Xiaohui, YANG Zhao, DONG Yunpeng, et al. Longitudinal profile of the upper Weihe River: Evidence for the late Cenozoic uplift of the northeastern Tibetan Plateau [J]. Geological Journal, 2018, 53(S1): 364-378. DOI: 10.1002/gj.3195
[4] CYR A J, GRANGER D E, OLIVETTI V, et al. Distinguishing between tectonic and lithologic controls on bedrock channel longitudinal profiles using cosmogenic 10Be erosion rates and channel steepness index [J]. Geomorphology, 2014, 209(15): 27-38. DOI: 10.1016/j.geomorph.2013.12.010
[5] CROSBY B T, WHIPPLE K X. Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand [J]. Geomorphology, 2006, 82(1-2): 16-38. DOI: 10.1016/j.geomorph.2005. 08.023
[6] 李正晨, 王先彦, 于洋, 等. 岩性和侵蚀基准面对构造活跃区河流地貌演化的影响——以青藏高原东北缘老虎山和哈思山地区为例[J]. 中国科学: 地球科学, 2021, 51(6): 994-1008. [LI Zhengchen, WANG Xianyan, YU Yang, et al. The impacts of base level and lithology on fluvial geomorphic evolution at the tectonically active Laohu and Hasi Mountains, northeastern Tibetan Plateau [J]. Science China Earth Sciences, 2021, 51(6): 994-1008] DOI: 10. 1360/N072020-0162
[7] BABAEI S, DEHBOZORGI M, HOSSEINIASL A, et al. New insights into the effect of the quaternary fault activity on river knickpoints in the Central Alborz(Iran)[J]. Quaternary International, 2020, 562(10): 104-120. DOI: 10.1016/j.quaint.2020.09.025
[8] ALVES F C, ROSSETTI D D F, VALERIANO M D M. Detecting neotectonics in the lowlands of Amazonia through the analysis of river long profiles [J]. Journal of South American Earth Sciences, 2020, 100: 102553. DOI: 10.1016/j.jsames.2020.102553
[9] 刘维明, 周丽琴, 陈晓清, 等. 雅砻江流域河道高程剖面上的堰塞坝印记[J]. 地学前缘, 2021, 28(2): 58-70. [LIU Weiming, ZHOU Liqin, CHEN Xiaoqing, et al. Influence of natural dams on the river profile of the Yalong River Basin [J]. Earth Science Frontiers, 2021, 28(2): 58-70] DOI: 10.13745/j.esf.sf.2020.9.1
[10] 李志威, 袁昕亚, 余国安. 雅鲁藏布江流域河流纵剖面特征及其地貌学意义[J]. 泥沙研究, 2020, 45(3): 67-73. [LI Zhiwei, YUAN Xinya, YU Guoan. Characteristics and geomorphologic significance of channel longitudinal profile in the Yarlung Tsangpo River Basin [J]. Journal of Sediment Research, 2020, 45(3): 67-73] DOI: 10.16239/j.cnki.0468-155x.2020.03.010
[11] CHAUVEAU D, AUTHEMAYOU C, MOLLIEX S, et al. Eustatic knickpoint dynamics in an uplifting sequence of coral reef terraces, Sumba Island, Indonesia [J]. Geomorphology, 2021, 393(15): 107936. DOI: 10.1016/J.GEOMORPH.2021.107936
[12] 刘譞, 林舟, 丁超. 岷江上游流域裂点分布及成因分析[J]. 高校地质学报, 2020, 26(3): 339-349. [LIU Xuan, LIN Zhou, DING Chao. Distribution and causes of knickpoints in the upper reaches of Minjiang River [J]. Geological Journal of China Universities, 2020, 26(3): 339-349] DOI: 10.16108/j.issn1006-7493.2019036
[13] 陈苗, 胡小飞, 王维. 走廊南山河流纵剖面高海拔裂点的成因[J]. 地理学报,2018, 73(9): 1702-1713. [CHEN Miao, HU Xiaofei, WANG Wei. The cause of high-altitude knickpoints on river longitudinal profiles along the Zoulang Nan Shan [J]. Acta Geographica Sinica, 2018, 73(9): 1702-1713] DOI: 10.11821/dlxb201809007
[14] HACKER B R, RATSCHBACHER L, WEBB L, et al. What brought them up? Exhumation of the Dabie Shan ultrahigh-pressure rocks [J]. Geology, 1995, 23(8): 743-746. DOI: 10.1130/00917613(1995)023<0743: WBTUEO>2.3.CO; 2
[15] 李三忠, 张国伟, 董树文, 等. 大别山高压—超高压岩石折返与扬子北缘构造变形的关系[J]. 岩石学报, 2010, 26(12): 3549-3562. [LI Sanzhong, ZHANG Guowei, DONG Shuwen, et al. Relation between exhumation of HP-UHP metamorphic rocks and deformation in the northern margin of the Yangtze Block [J]. Acta Petrologica Sinica, 2010, 26(12): 3549-3562]
[16] 李宝芳, 马文璞, 张惠良, 等. 大别山北麓石炭纪盆地沉积和构造研究[J]. 地学前缘, 2000, 7(3): 153-167. [LI Baofang, MA Wenpu, ZHANG Huiliang, et al. A study on sedimentology and tectonics of the carboniferous basin in the northern foot hills of the Dabie Mountains, China [J]. Earth Science Frontiers, 2000, 7(3): 153-167] DOI: 10.3321/j.issn:1005-2321.2000.03.016
[17] 刘贻灿, 徐树桐, 李曙光, 等. 大别山北部榴辉岩的大地构造属性及冷却史[J]. 地球科学, 2003, 28(1): 11-16. [LIU Yican, XU Shutong, LI Shuguang, et al. Tectonic setting and cooling history of eclogites from northern Dabie Mountains [J]. Earth Science, 2003, 28(1): 11-16] DOI: 10.3321/j.issn:1000-2383.2003.01.003
[18] 闫诚, 高锐, 郭晓玉. 深地震反射剖面所揭示的大陆碰撞后期的构造演化——以大别山造山带研究为例[J]. 地球物理学进展, 2020, 35(5): 1702-1709. [YAN Cheng, GAO Rui, GUO Xiaoyu. Post-collisional tectonic evolution revealed by deep seismic reflection profiles: A case study in the Dabie orogenic belt [J]. Progress in Geophysics, 2020, 35(5): 1702-1709] DOI: 10.6038/pg2020DD0362
[19] 黎哲君, 义崇政, 周冬瑞, 等. 大别山造山带东段重力异常多尺度分界及其构造意义[J]. 地震地质, 2021, 43(1): 158-176. [LI Zhejun, YI Chongzheng, ZHOU Dongrui, et al. Multi-scale decomposition of gravity anomaly of the eastern Dabie orogen and its tectonic implications [J]. Seismology and Geology, 2021, 43(1): 158-176] DOI: 10.3969/j.issn. 0253-4967.2021.01.010
[20] 赵明松, 李德成, 程先富, 等. 皖西大别山区土壤侵蚀空间分布特征及与地形的关系[J]. 安徽师范大学学报(自然科学版), 2017, 40(3): 265-270. [ZHAO Mingsong, LI Decheng, CHENG Xianfu, et al. Spatial characteristics of soil erosion and its relationship to topography in Dabie Mountains of west Anhui [J]. Journal of Anhui Normal University(Natural Science), 2017, 40(3): 265-270] DOI: 10.14182/J.cnki.1001-2443.2017.03.013
[21] 江来利, 胡召齐. 大别山东段的变质地层格架[J]. 安徽地质, 2014, 24(1): 1-6. [JIANG Laili, HU Zhaoqi. Metamorphic stratigraphic framework in the eastern part of the Dabie Mountain [J]. Geology of Anhui, 2014, 24(1): 1-6] DOI: 10.3969/j.issn.1005-6157.2014.01.001
[22] HACKER B R, RATSCHBACHER L, WEBB L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China [J]. Earth and Planetary Science Letters, 1998, 161(1-4): 215-230. DOI: 10. 1016/S0012-821X(98)00152-6
[23] 安徽省地质调查院. 1:50万安徽省地质构造图[CM/OL].(2018-11-29)[2022-07-15] http://www.ags.org.cn/download.php. [Geological Survey of Anhui Province. 1:500,000 Geologic structure map of Anhui province [CM/OL].(2018-11-29)[2022-07-15]http://www.ags.org.cn/download.php]
[24] FLINT J J. Stream gradient as a function of order, magnitude, and discharge [J]. Water Resources Research, 1974, 10(5): 969-973. DOI: 10.1029/WR010i005p00969
[25] HOWARD A D. A detachment-limited model of drainage basin evolution [J]. Water Resources Research, 1994, 30(7): 2261-2285. DOI: 10.1029/94WR00757
[26] MUDD S M, CLUBB F J, GAILLETON B, et al. How concave are river channels? [J] Earth Surface Dynamics, 2018, 6(2): 505-523. DOI: 10.5194/esurf-6-505-2018
[27] SNYDER N P, WHIPPLE K X, TUCKER G E, et al. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California [J]. Geological Society of America Bulletin, 2000, 112(8): 1250-1263. DOI: 10.1130/0016-7606(2000)112< 1250:LRTTFD> 2.0.CO; 2
[28] GALLEN S F, WEGMANN K W. River profile response to normal fault growth and linkage: An example from the Hellenic forearc of south-central Crete, Greece [J]. Earth Surface Dynamics, 2017, 5(1): 161-186. DOI: 10.5194/esurf-2016-52
[29] TRAUERSTEIN M, NORTON K P, PREUSSER F, et al. Climatic imprint on landscape morphology in the western escarpment of the Andes [J]. Geomorphology, 2013, 194: 76-83. DOI: 10.5194/esurf-5-161-2017
[30] PIKE R J, WILSON S E. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis [J]. Geological Society of America Bulletin, 1971, 82(4): 1079-1083. DOI: 10.1130/0016-7606(1971)82[1079:ERHIAG]2. 0.CO; 2
[31] STRAHLER A N. Hypsometric(area-altitude)analysis of erosional topography [J]. Geological Society of America Bulletin, 1952, 63(11): 1117-1142. DOI: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO; 2
[32] DELCAILLAU B, DEFFONTAINES B, FLOISSAC L, et al. Morphotectonic evidence from lateral propagation of an active frontal fold; Pakuashan anticline, foothills of Taiwan [J]. Geomorphology, 1998, 24(4): 263-290. DOI: 10. 1016/s0169-555x(98)00020-8
[33] 祝士杰, 汤国安, 李发源, 等. 基于DEM的黄土高原面积高程积分研究[J]. 地理学报, 2013, 68(7): 921-932. [ZHU Shijie, TANG Guo'an, LI Fayuan, et al. Spatial variation of hypsometric integral in the Loess Plateau based on DEM [J]. Acta Geographica Sinica, 2013, 68(7): 921-932]
[34] WANG Yizhou, ZHANG Huiping, ZHENG Dewen, et al. Coupling slope-area analysis, integral approach and statistic tests to steady state bedrock river profile analysis [J]. Earth Surface Dynamics, 2017, 5(1): 145-160. DOI: 10.5194/esurf-2016-40
[35] 吴素业. 安徽大别山区降雨侵蚀力简化算法与时空分布规律[J]. 中国水土保持, 1994, 4(4): 12-13. [WU Suye. Simplified algorithm and spatial and temporal distribution of precipitation erosivity in the Dabie Mountains, Anhui [J]. Soil and Water Conservation in China, 1994, 4(4): 12-13] DOI: 10.14123/j.cnki.swcc.1994.04.004
[36] SCHWANGHART W, GROOM G, KUHN N J, et al. Flow network derivation from a high resolution DEM in a low relief, agrarian landscape [J]. Earth Surface Processes and Landforms, 2013, 38(13): 1576-1586. DOI: 10.1002/esp.3452
[37] SCHWANGHART W, SCHERLER D. Bumps in river profiles: Uncertainty assessment and smoothing using quantile regression techniques [J]. Earth Surface Dynamics, 2017, 5(4):821-839. DOI: 10.5194/esurf-5-821-2017
[38] SCHWANGHART W, SCHERLER D. Short communication: TopoToolbox 2-MATLAB-based software for topographic analysis and modeling in earth surface sciences [J]. Earth Surface Dynamics, 2014, 2(1): 1-7. DOI: 10.5194/esurf-2-1-2014
[39] 戴岩, 王先彦, 王胜利, 等. 地貌形态指数反映的青藏高原东北部宛川河流域新构造活动[J]. 地理学报, 2016, 71(3): 412-421. [DAI Yan, WANG Xianyan, WANG Shengli, et al. The neotectonic activity of Wanchuan catchment reflected by geomorphic indices [J]. Acta Geographica Sinica, 2016, 71(3): 412-421] DOI: 10.11821/dlxb201603005
[40] 黄伟亮, 杨虔灏, 彭建兵, 等. 基于河流裂点序列研究秦岭北缘断裂强震活动历史[J]. 第四纪研究, 2022, 42(3): 844-857. [HUANG Weiliang, YANG Qianhao, PENG Jianbing, et al. Evaluating knickpoint retreat along the Qinling north piedmont fault for paleoseismological analysis during Holocene [J]. Quaternary Sciences, 2022, 42(3): 844-857] DOI: 10.11928 /j.issn.1001-7410.2022.03.17
[41] 杨源源, 赵朋, 汪小厉, 等. 大别山东麓河流变形研究与郯庐断裂带活动性分析[J]. 华北地震科学, 2018, 36(4): 16-24. [YANG Yuanyuan, ZHAO Peng, WANG Xiaoli, et al. River deformation in the east foot of the Dabie Mountains and activity analysis of Tan-Lu fault zone [J]. North China Earthquake Sciences, 2018, 36(4): 16-24] DOI: 10.3969/j. issn.1003-1375.2018.04.003
[42] 朱光, 王勇生, 牛漫兰, 等. 郯庐断裂带的同造山运动[J]. 地学前缘, 2004, 11(3): 171-181. [ZHU Guang, WANG Yongsheng, NIU Manlan, et al. Synorogenic movement of the Tan-Lu fault zone [J]. Earth Science Frontiers, 2004, 11(3): 171-181] DOI: 10.3321/j.issn:1005-2321.2004.03. 018
[43] LIU Yican, LI Shuguang. Detachment within subducted continental crust and multi-slice successive exhumation of ultrahigh-pressure metamorphic rocks: Evidence from the Dabie-Sulu orogenic belt [J]. Chinese Science Bulletin, 2008, 53(20): 3105-3119. DOI: 10.1007/s11434-008-0387-1
[44] KORUP O, MONTGOMERY D R, HEWITT K. Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes [J]. Proceedings of the National Academy of Sciences, 2010, 107(12): 5317-5322. DOI: 10. 1073/pnas.0907531107
[45] 曹志磊, 周琼, 鲍玉静, 等. 郯庐断裂带中南段断层形变累积率长期变化特征[J]. 国际地震动态, 2018, 480(12): 22-28. [CAO Zhilei, ZHOU Qiong, BAO Yujing, et al. Long-term variation of fault deformation rate in the central-south segment of the Tanlu fracture zone [J]. Recent Developments in World Seismology, 2018, 480(12): 22-28] DOI: 10.3969/j.issn.0253-4975.2018.12.005
[46] 葛计划, 曹志磊, 孙军, 等. 郯庐断裂带中南段跨断层短水准形变特征初步分析[J]. 地震科学进展, 2022, 52(11): 513-523+535. [GE Jihua, CAO Zhilei, SUN Jun, et al. Preliminary analysis on the characteristics of short leveling deformation across faults in the central and southern part of Tan-Lu fault zone [J]. Progress in Earthquake Sciences,2022, 52(11): 513-523+535] DOI: 10.19987/j.dzkxjz.2022-078
[47] WHIPPLE K X. Bedrock rivers and the geomorphology of active orogens [J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1): 151-185. DOI: 10.1146/annurev.earth.32.101802.120356
[48] 肖平, 景才瑞. 大别山天堂水库四周第四纪冰川遗迹探讨[J]. 华中师范大学学报(自然科学版), 1993, 27(1): 99-104. [XIAO Ping, JING Cairui. Research into the remnants of quaternary glacial round Tiantang reservoir, Dabie Mountain [J]. Journal of Central China Normal University, 1993, 27(1): 99-104] DOI: 10.19603/j.cnki.1000-1190.1993.01.025
[49] 刘格升, 王传尚, 胡斌. 大别山地区存在第四纪冰川吗?[J]. 华南地质与矿产, 2013, 29(1): 66-71. [LIU Gesheng, WANG Chuanshang, HU Bin. Does the Quaternary glacier ever exist in the Dabieshan area? [J]. Geology and Mineral Resources of South China, 2013, 29(1): 66-71] DOI: 10.3969/j.issn.1007-3701.2013.01.010
[50] 施雅风. 中国东部中低山地有无发育第四纪冰川的可能性?[J]. 地质论评, 2011, 57(1): 44-49. [SHI Yafeng. Is it possible to develop Quaternary glaciers in the middle and low mountains of eastern China? [J]. Geological Review, 2011, 57(1): 44-49] DOI: 10.16509/j.georeview.2011.01.011
[51] 杨翔, 程先富. 安徽省大别山区土壤侵蚀及其经济损失评估[J]. 土壤保持通报, 2013, 33(6): 136-140. [YANG Xiang, CHENG Xianfu. Soil erosion and its economic loss assessment in Dabie Mountain area in Anhui province [J]. Bulletin of Soil and Water Conservation, 2013, 33(6): 136-140] DOI: 10.13961/j.cnki.stbctb.2013.06.040
[52] BOOKHAGEN B, BURBANK D W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge [J]. Journal of Geophysical Research, 2010, 115: F03019. DOI: 10.1029/2009JF001426
[53] BONNET S, CRAVE A. Landscape response to climate change: Insights from experimental modeling and implications for tectonics versus climatic uplift of topography [J]. Geology, 2003, 31(2): 123-126. DOI: 10.1130/0091-7613(2003)031<0123: LRTCCI>2.0.CO; 2
[54] 张康, 王兆印, 刘怀湘, 等. 裂点发育及其对堰塞坝的稳定性影响[J]. 山地学报, 2011, 29(4): 474-482. [ZHANG Kang, WANG Zhaoyin, LIU Huaixiang, et al. Effect of knickpoint development in controlling the stability of the landslide dam [J]. Mountain Research, 2011, 29(4): 474-482] DOI: 10.16089/j.cnki.1008-2786.2011.04.008
[55] SONAM, SAHOO R, SINGH R N. Temporal profiling of uplift rate along an active fault using river long profile in the Kuchchh region, western India [J]. Quaternary International, 2021, 585: 85-98. DOI: 10.1016/j.quaint.2020.11.022