参考文献/References:
[1] HECTOR A, SCHMID B, BEIERKUHNLEIN C, et al. Plant diversity and productivity experiments in Europeangrasslands[J]. Science, 1999, 286(5442): 1123-1127. DOI: 10.1126/science.286.5442.1123
[2] LI Delong, WU Shuyao, LIU Laibao, et al. Vulnerability of the global terrestrial ecosystems to climate change[J]. Global Change Biology, 2018, 24(9): 4095-4106. DOI: 10.1111/gcb.14327
[3] 李宗省, 何元庆, 辛惠娟, 等. 我国横断山区1960—2008年气温和降水时空变化特征[J].地理学报, 2010, 65(5): 563-579. [LI Zongxing, HE Yuanqing, XIN Huijuan, et al. Spatio-temporal variations of temperature and precipitation in Mts. Hengduan region during 1960—2008[J]. ActaGeograqhicaSinica, 2010, 65(5): 563-579]
[4] 郭剑英, 王根绪. 贡嘎山风景名胜区的气候变化特征及其对旅游业的影响[J]. 冰川冻土, 2011, 33(1): 214-219. [GUO Jianying, WANG Genxu. Climate change on the Mt. Gongga and its impact on tourism [J]. Journal of Glaciology and Geocryology, 2011, 33(1): 214-219]
[5] 钟鼎杰, 杨存建. 2001—2020年川西高原植被EVI时空变化特征及气候因子驱动力分析[J].水土保持研究, 2022, 29(4): 223-230. [ZHONG Dingjie, YANG Cunjian. Spatioteporal variation characteristics of vegetation EVI and driving forces of climate factors in western Sichuan Plateau from 2001 to 2020 [J]. Research of Soil and Water Conservation, 2022, 29(4): 223-230] DOI: 10.13869/j.cnki.rswc.2022.04.006
[6] 王叶兰, 杨鑫, 郝利娜.川西高原植被物候及其对气候变化的响应[J].长江科学院院报, 2023, 40(5): 77-84+93. [WANG Yelan, YANG Xin, HAO Lina. Phenology of vegetation and its response to climate change in the western Sichuan Plateau [J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(5): 77-84+93] DOI: 10.11988/ckyyb.20220041
[7] 钟祥浩. 贡嘎山高山生态系统观测试验站总体设想[J]. 山地研究, 1989, 7(4): 266. [ZHONG Xianghao.Overall idea of the Gongga Mountain Alpine Ecosystem Observation and Experimental Station[J].Mountain Research, 1989, 7(4): 266]
[8] YAN Yingjie, NIU Shuli, HE Yicheng, et al. Changing plant species composition and richness benefit soil carbon sequestration under climate warming[J]. Functional Ecology, 2022, 36(12): 2906-2916. DOI: 10.1111/1365-2435.14218
[9] YANG Yan, HALBERITTER A H, KLANDERUD K, et al. Transplants, Open Top Chambers(OTCs)and gradient studies askdifferent questions in climate change effects studies[J]. Frontiers in Plant Science, 2018, 9: 1574. DOI: 10.3389/fpls.2018.01574
[10] QUAN Quan, ZHANG Fangyue, MENG Cheng, et al. Shifting biomass allocation determines community water use efficiency under climate warming[J]. Environmental Research Letters, 2020, 15(9): 094041. DOI: 10.1088/1748-9326/aba472
[11] CHEN Huai, ZHU Qiuan, PENG Changhui, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2013, 19(10): 2940-2955. DOI: 10.1111/gcb.12277
[12] YAN Wenchao, WANG Yuanyun, CHAUDHARY P, et al. Effects of climate change and human activities on net primary production of wetlands on the Zoige Plateau from 1990 to 2015[J]. Global Ecology and Conservation, 2022, 35: e02052. DOI: 10.1016/j.gecco.2022.e02052
[13] SHI Ning, NAUDIYAL N, WANG Jinniu, et al. Assessing the impact of climate change on potential distribution of meconopsis punicea and its influence on ecosystem services supply in the southeastern margin of Qinghai-Tibet Plateau[J]. Frontiers in Plant Science, 2022, 12: 830119. DOI: 10.3389/fpls.2021.830119
[14] 何佳莉, 王金牛, 周天阳, 等,发育阶段和海拔对岷江源区陇蜀杜鹃小枝功能性状及生物量分配的影响[J]. 应用生态学报, 2020, 31(12): 4027-4034.[HE Jiali, WANG Jinniu, ZHOU Tianyang, et al. Effects of growth stage and altitude on twig functional traits and biomass allocation of Rhododendron przewalskii in the headwater region of Minjiang River, China[J]. Chinese Journal of Aplied Ecology, 2020, 31(12): 4027-4034]DOI: 10.13287/j.1001-9332.202012.001
[15] NAUDIYAL N, WANG Jinniu, WU Ning, et al. Potential distribution of Abies, Picea, and Juniperus species in the sub-alpine forest of Minjiang headwater region under current and future climate scenarios and its implications on ecosystem services supply[J]. Ecological Indicators, 2021, 121: 107131. DOI: 10.1016/j.ecolind.2020.107131
[16] 贾龙玉, 管增艳, 常瑞英, 等. 贡嘎山树线上方杜鹃灌木径向生长对气候变化的响应特征[J].山地学报, 2021, 39(5): 646-657. [JIA Longyu, GUAN Zengyan, CHANG Ruiying, et al. Response of radical growth of Rhododendron faberi subsp. Prattii to climate change above treeline in the Gongga Mountain[J]. Mountain Research, 2021, 39(5): 646-657] DOI: 10.16089/j.cnki.1008-2786.000627
[17] 刘勤, 王玉宽, 彭培好, 等. 气候变化下四川省物种的分布规律及迁移特征[J]. 山地学报, 2016, 34(6): 716-723. [LIU Qin, WANG Yukuan, PENG Peihao, et al.Characteristics of distribution and migration of species in Sichuan under the climate change[J]. Mountain Research, 2016, 34(6): 716-723] DOI: 10.16089/j.cnki.1008-2786.000178
[18] VANDVIK V, HALBRITTER A H, YANG Yan, et al. Plant traits and vegetation data from climate warming experiments along an 1100m elevation gradient in Gongga Mountains, China[J]. Scientific Data, 2020, 7(1): 189. DOI: 10.1038/s41597-020-0529-0
[19] KLEIN J A, HARTE J, ZHAO Xinquan. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau[J]. Ecological Applications, 2007, 17(2): 541-557. DOI: 10.1890/05-0685
[20] 张莉.模拟增温对贡嘎山高山草甸群落结构和功能的影响[D].成都: 中国科学院、水利部成都山地灾害与环境研究所, 2018: 41-43. [ZHANG Li. Effects of experimental warming on community structure and function in alpine meadow, Gongga Mountain[D]. Chengdu: Institute of Mountain Hazards and Environment, CAS, 2018: 41-43]
[21] LIANG Maowei, LIANG Cunzhu, HAUTIER Y, et al. Grazing-induced biodiversity loss impairs grassland ecosystem stability at multiple scales[J]. Ecology Letters, 2021, 24(10): 2054-2064. DOI: 10.1111/ele.13826
[22] WANG Shaopeng, LAMY T, HALLETT L M, et al. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data[J]. Ecography, 2019, 42(6): 1200-1211. DOI: 10.1111/ecog.04290
[23] GANJURJAV H, GAO Qingzhu, GORNISH E S, et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau [J]. Agricultural and Forest Meteorology, 2016, 223: 233-240. DOI: 10.1016/j.agrformet.2016.03.017
[24] ELMENDORF S C, HENRY G H R, HOLLISTER R D, et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming[J]. Nature Climate Change, 2012, 2(6): 453-457. DOI: 10.1038/nclimate1465
[25] HINZMAN L D, BETTEZ N D, BOLTON W R, et al. Evidence and implications of recent climate change in northern Alaska and other Arctic regions[J]. Climatic Change, 2005, 72(3): 251-298. DOI: 10.1007/s10584-005-5352-2
[26] ZHU Juntao, ZHANG Yangjian, YANG Xian, et al. Warming alters plant phylogenetic and functional community structure[J]. Journal of Ecology, 2020, 108(6): 2406-2415. DOI: 10.1111/1365-2745.13448
[27] LIU Yinzhan, MU Junpeng, NIKLAS K J, et al. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan Plateau[J]. New Phytologist, 2012, 195(2): 427-436. DOI: 10.1111/j.1469-8137.2012.04178.x
[28] GRIME J P, Competitive exclusion in herbaceous vegetation[J]. Nature, 1973, 242(5396): 344-347. DOI: 10.1038/242344a0
[29] 牛书丽, 韩兴国, 马克平, 等. 全球变暖与陆地生态系统研究中的野外增温装置[J]. 植物生态学报, 2007, 31(2): 262-271. [NIU Shuli, HAN Xingguo, MA Keping, et al. Field facilities in global warming and terrestrial ecosystem research[J]. Journal of Plant Ecology, 2007, 31(2): 262-271]
[30] GRABHERR G, GOTTFRIED M, PAULI H. Climate effects on mountain plants [J]. Nature, 1994, 369(6480): 448-448. DOI: 10.1038/369448a0
[31] WALTHER G R, BEISSNER S, BURGA C A. Trends in the upward shift of alpine plants[J]. Journal of Vegetation Science, 2005, 16(5): 541-548. DOI: 10.1658/1100-9233(2005)16[541: Tituso]2.0.Co; 2
[32] WANG Qi, ZHANG Zhenhua, DU Rui, et al. Richness of plant communities plays a larger role than climate in determining responses of species richness to climate change[J]. Journal of Ecology, 2019, 107(4): 1944-1955. DOI: 10.1111/1365-2745.13148
[33] SAETERSDAL M, BIRKS H J B. A comparative ecological study of Norwegian mountain plants in relation to possible future climatic change[J]. Journal of Biogeography, 1997, 24(2): 127-152. DOI: 10.1046/j.1365-2699.1997.00096.x
[34] ALWARD R D, DETLING J K, MILCHUNAS D G.Grassland vegetation changes and nocturnal global warming[J]. Science, 1999, 283(5399): 229-231. DOI: 10.1126/science.283.5399.229
[35] 李英年, 赵亮, 赵新全, 等.5年模拟增温后矮嵩草草甸群落结构及生产量的变化[J]. 草地学报, 2004, 12(3): 236-239. [LI Yingnian, ZHAO Liang, ZHAO Xinquan, et al. Effects of a 5-years mimic temperature increase to the structure and productivity of KobresiaHumilis meadow[J]. ActaAgrestiaSinica, 2004, 12(3): 236-239]
[36] 周华坤, 周兴民, 赵新全. 模拟增温效应对矮嵩草草甸影响的初步研究[J].植物生态学报, 2000, 24(5): 547-553. [ZHOU Huakun, ZHOU Xinmin, ZHAO Xinquan. A preliminary study of the influence of simulated greenhouse effect on a KobresiaHumilis meadow[J]. ActaPhytoecologicalSinica, 2000, 24(5): 547-553]
[37] WALKER M D, WEBBER P J, ARNOLD E H, et al. Effects of interannual climate variation on aboveground phytomass in alpine vegetation[J]. Ecology, 1994, 75(2): 393-408. DOI: 10.2307/1939543
[38] 宗宁, 柴曦, 石培礼, 等. 藏北高寒草甸群落结构与物种组成对增温与施氮的响应[J].应用生态学报,2016, 27(12): 3739-3748. [ZONG Ning, CHAI Xi, SHI Peili, et al. Responses of plant community structure and species composition to warming and N addition in an alpine meadow,northern Tibetan Plateau,China [J]. Chinese Journal of Applied Ecology, 2016, 27(12): 3739-3748] DOI: 10.13287/j.1001-9332.201612.007
[39] 夏建阳, 鲁芮伶, 朱辰, 等. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020,44(5): 494-514. [XIA Jianyang, LU Ruiling, ZHU Chen, et al. Response and adaptation of terrestrial ecosystem processes to climate warming[J].Chinese Journal of Plant Ecology, 2020, 44(5): 494-514] DOI: 10.17521/cjpe.2019.0323
[40] WALKER M D, WAHREN C H, HOLLISTER R D, et al. Plant community responses to experimental warming across the tundra biome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5): 1342-1346. DOI: 10.1073/pnas.0503198103
[41] EDWARDS M, HENRY G H R.The effects of long-term experimental warming on the structure of three High Arctic plant communities[J]. Journal of Vegetation Science, 2016, 27(5): 904-913. DOI: 10.1111/jvs.12417
[42] HUDSON J M G, HENRY G H R. High Arctic plant community resists 15 years of experimental warming[J]. Journal of Ecology, 2010, 98(5): 1035-1041. DOI: 10.1111/j.1365-2745.2010.01690.x
[43] GUNDERSON C A, WULLSCHLEGER S D. Photosynthetic acclimation in trees to rising atmospheric co2: A broader perspective[J]. Photosynthesis Research, 1994, 39(3): 369-388. DOI: 10.1007/bf00014592
[44] 崔海军.高山草地植物群落对气候变化的响应研究[D].成都: 中国科学院、水利部成都山地灾害与环境研究所, 2016: 30-40. [CUI Haijun.Study on the response of plant community in alpine grassland to climate change[D]. Chengdu: Institute of Mountain Hazards and Environment, CAS, 2016: 30-40]
[45] 沈其荣.土壤肥料学通论[M]. 北京: 高等教育出版社, 2021: 168-170. [SHEN Qirong. Soil and fertilizer sciences[M]. Beijing: China Higher Education Press, 2021: 168-170]
[46] DEBOUK H, DE BELLO F, SEBASTIA M T. Functional trait changes, productivity shifts and vegetation stability in mountain grasslands during a short-term warming[J]. Plos One, 2015, 10(10): e0141899. DOI: 10.1371/journal.pone.0141899
[47] CHEN Ji. LUO Yiqi, XIA Jianyang, et al. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2016, 220: 21-29. DOI: 10.1016/j.agrformet.2016.01.010
[48] BHATTARAI P, TIMILSINA B, PARAJULI R, et al. Distinct response of high-latitude ecosystem and high-altitude alpine ecosystem to temperature and precipitation dynamics: A meta-analysis of experimental manipulation studies[J]. Progress in Physical Geography, 2022, 46(6): 909-921. DOI: 10.1177/03091333221114866
[49] KIMBALL J S, MCDONALD K C, ZHAO M. Spring thaw and its effect on terrestrial vegetation productivity in the western arctic observed from satellite microwave and optical remote sensing[J]. Earth Interactions, 2006, 10(21): 1-22. DOI: 10.1175/EI187.1
[50] 潘瑞炽.植物生理学[M].北京: 高等教育出版社, 2012: 78-90. [PAN Ruichi. Plant physiology[M]. Beijing: China Higher Education Press, 2012: 78-90]
[51] ROBINSON C H, WOOKEY P A, PARSONS A N, et al. Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath[J]. Oikos, 1995, 74(3): 503-512. DOI: 10.2307/3545996
[52] SHAVER G R, CANADELL J, CHAPIN F S, et al. Global warming and terrestrial ecosystems: A conceptual framework for analysis[J]. Bioscience, 2000, 50(10): 871-882. DOI: 10.1641/0006-3568(2000)050[0871: Gwatea]2.0.Co; 2
[53] SALESKA S R, HARTE J, TORN M S. The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow[J]. Global Change Biology, 1999, 5(2): 125-141. DOI: 10.1046/j.1365-2486.1999.00216.x
[54] 龚春梅, 白娟, 梁宗锁. 植物功能性状对全球气候变化的指示作用研究进展[J]. 西北植物学报, 2011, 31(11): 2355-2363. [GONG Chunmei, BAI Juan, LIANG Zongsuo. Advance on indicating functions of plant functional traits to global climate changes[J]. Acta Bot. Boreal. Occident. Sin, 2011, 31(11): 2355-2363]
[55] ALEXANDER J M, DIEZ J M, LEVINE J M. Novel competitors shape species' responses to climate change [J]. Nature, 2015, 525(7570): 515-518. DOI: 10.1038/nature14952
[56] 王如松, 马世骏. 边缘效应及其在经济生态学中的应用[J]. 生态学杂志, 1985(2): 38-42. [WANG Rusong, MA Shijun. Edge effect and its application in economic ecology[J]. Journal of Ecology, 1985(2): 38-42]
[57] 王巍巍, 贺达汉. 生态景观边缘效应研究进展[J].农业科学研究, 2012, 33(3): 62-66. [WANG Weiwei, HE Dahan. Research progress of the edge effect of ecological landscape [J].Journal of Agricultural Sciences, 2012, 33(3): 62-66]
[58] CHAPIN F S, SHAVER G R, GIBLIN A E, et al. Responses of arctic tundra to experimental and observed changes in climate[J]. Ecology, 1995, 76(3): 694-711. DOI: 10.2307/1939337
[59] CHAPIN F S, SHAVER G R. Physiological and growth responses of arctic plants to a field experiment simulating climatic change[J]. Ecology, 1996, 77(3): 822-840. DOI: 10.2307/2265504