[1]苏常红,刘 宇,宋子豪,等.干旱区灌丛形态对水文连通性的响应及生态效应[J].山地学报,2023,(3):375-385.[doi:10.16089/j.cnki.1008-2786.000755 ]
 SU Changhong,LIU Yu,SONG Zihao,et al.Responses of Shrub Morphology to HydrologicalConnectivity and their Ecological Effects in Arid Areas[J].Mountain Research,2023,(3):375-385.[doi:10.16089/j.cnki.1008-2786.000755 ]
点击复制

干旱区灌丛形态对水文连通性的响应及生态效应
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第3期
页码:
375-385
栏目:
山地环境
出版日期:
2023-05-25

文章信息/Info

Title:
Responses of Shrub Morphology to HydrologicalConnectivity and their Ecological Effects in Arid Areas
文章编号:
1008-2786-(2023)3-375-11
作者:
苏常红1刘 宇2宋子豪1寻雅雯1
(1. 天津师范大学 地理与环境科学学院,天津 300387; 2. 中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室,北京100101)
Author(s):
SU Changhong1 LIU Yu2 SONG Zihao1 XUN Yawen1
(1. College of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China; 2. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)
关键词:
水文连通性 灌丛 泥沙截留 土壤固碳 黄土高原
Keywords:
hydrological connectivity shrub morphology sediment retention soil carbon sequestration the Loess Plateau
分类号:
Q948.2,P935.1
DOI:
10.16089/j.cnki.1008-2786.000755
文献标志码:
A
摘要:
干旱区生态系统的水文连通性影响植被斑块形态的空间分异。植被形态对水文连通性的适应是一个复杂且长期的过程。研究植被与水文连通性,过去多基于群落以上尺度,不涉及微观尺度。从植株个体角度探讨植被斑块形态与水文连通性关系,有助于挖掘微观尺度上景观格局对生态过程的驱动机制。本研究以黄土高原丘陵沟壑区多年生灌丛作为研究对象,以高分辨率无人机航拍照片解译和野外定点观测为研究手段,量化植被斑块形态与水文连通性之间定量关系,分析二者对泥沙截留与土壤固碳等关键生态过程的影响。结果表明:(1)坡面灌丛斑块总体呈现横向生长趋势,灌丛斑块纵横比小于1; 灌丛斑块纵横比从坡顶到坡底逐渐增大,分别为0.64、0.70、0.79、0.83;(2)灌丛方向与水流方向夹角从坡顶到坡底先减小再增大; 坡面中部的坡度最大,灌丛方向最接近与水流垂直的方向;(3)灌丛的汇流累积量从坡顶到坡底逐渐增大,表明其水文连通度逐渐增大; 水文连通度与灌丛斑块纵横比呈正相关关系; 当水文连通度足够大时,灌丛在横纵方向上的生长没有倾向,形状近似为圆形;(4)泥沙拦截量和固碳效率随坡位下降而下降,二次曲线拟合表明泥沙拦截量和固碳效率随水文连通度增加呈增加态势,表明水文连通度有促使植株自主优化株型、提升泥沙截留和固碳效率的功效。本研究有助于为黄土高原干旱区植被结构优化及生态建设提供案例分析与借鉴。
Abstract:
The hydrological connectivity of ecosystems in arid areas affects the spatial differentiation of vegetation patch morphology. It is a complex and long-term process for the adaptation of vegetation morphology to hydrological connectivity. Previous research on the correlation between vegetation and hydrological connectivity was conducted on a larger scale of above community scale, not on the microscale. Investigation into the relations of vegetation patch and hydrological connectivity at single-plant scale is expected to be conducive to the revealing of the driving mechanisms of landscape patterns on ecological processes.

参考文献/References:

[1] LEXARTZA-ARTZA I, WAINWRIGHT J. Hydrological connectivity: Linking concepts with practical implications [J]. Catena, 2009, 79(2): 146-152. DOI: 10.1016/j.catena.2009.07.001
[2] 王利成, 温仲明, 逮金鑫. 延河流域植被景观格局与水文连通性关系[J]. 水土保持研究, 2022, 29(5): 124-130. [WANG Licheng, WEN Zhongming, LU Jinxin. Relationship between vegetation landscape pattern and hydrological connectivity in Yanhe River Basin [J]. Research of Soil and Water Conservation, 2022, 29(5): 124-130] DOI: 10.13869/j.cnki.rswc.20220608.001
[3] MAYOR A G, BAUTISTA S, RODRIGUEZ F, et al. Connectivity-mediated ecohydrological feedbacks and regime shifts in drylands [J]. Ecosystems, 2019, 22(7): 1497-1511. DOI: 10.1007/s10021-019-00366-w
[4] TURNBULL L, WAINWRIGHT J. From structure to function: Understanding shrub encroachment in drylands using hydrological and sediment connectivity [J]. Ecological Indicators, 2019, 98(3): 608-618. DOI: 10.1016/j.ecolind.2018.11.039
[5] CAI Qiangguo. Soil erosion and management on the Loess Plateau [J]. Journal of Geographical Sciences, 2001, 11(1): 53-70. DOI: 10.1007/bf02837376
[6] FU Bojie, WANG Shuai, LIU Yu, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China [J]. Annual Review of Earth and Planetary Sciences, 2017, 45(1): 223-243. DOI: 10.1146/annurev-earth-063016-020552
[7] LIU Yu, YU Xiubo, ZHAO Liang, et al. Evaluating the revegetation by shrub planting in degraded dryland rangeland: Perspectives of hydrological and sediment connectivity [J]. Current Opinion in Environmental Sustainability, 2021, 48(2): 132-138. DOI: 10.1016/j.cosust.2020.12.009
[8] 徐莉, 刘宇, 张忠启, 等. 灌草镶嵌坡面土壤紧实度变异及水文连通度的影响[J]. 水土保持研究, 2020, 27(5): 133-137+146. [XU Li, LIU Yu, ZHANG Zhongqi, et al. Variation of soil compaction and the impacts of hydrological connectivity on shrub-grass mosaic slope [J]. Research of Soil and Water Conservation, 2020, 27(5)133-137+146] DOI: 10.13869/j.cnki.rswc.2020.05.019
[9] 丑述仁, 高微微, 于占超, 等. GIS支持下基于DEM的中等流域的划分——以富县为例[J]. 地下水, 2011, 33(6): 131-133. [CHOU Shuren, GAO Weiwei, YU Zhanchao, et al. Watershed division based on DEM in GIS [J]. Ground Water, 2011, 33(6): 131-133]
[10] 李嵩, 郑新军, 唐立松, 等. 基于异速生长理论的准噶尔盆地荒漠灌丛形态研究[J].植物生态学报, 2011, 35(5): 471-479. [LI Song, ZHENG Xinjun, TANG Lisong, et al. Morphological investigation of desert shrubs of China's Junggar Basin based on allometric theory [J]. Chinese Journal of Plant Ecology, 2011, 35(5): 471-479] DOI: 10.3724/SP.J.1258.2011.00471
[11] 郭志霞, 刘任涛, 赵文智. 荒漠灌丛和土壤动物关系及对降水变化的响应研究进展[J]. 草业学报, 2022, 31(10): 206-216. [GUO Zhixia, LIU Rentao, ZHAO Wenzhi. The relationships between desert shrubs and soil fauna and their responses to precipitation changes in arid regions:A review [J]. Acta Prataculturae Sinica, 2022, 31(10): 206-216] DOI: 10.11686/cyxb2021389
[12] 朱苗苗, 朱强根, 李波, 等. 植物构件间异速生长关系研究进展[J]. 安徽农学通报, 2022, 28(2): 36-39. [ZHU Miaomiao, ZHU Qianggen, LI Bo, et al. Research progress of allometric growth relationship among plant components [J]. Anhui Agricultural Science Bulletin, 2022, 28(2): 36-39] DOI: 10.16377/j.cnki.issn1007-7731.2022.02.018
[13] 陆霞梅, 周长芳, 安树青, 等. 植物的表型可塑性、异速生长及其入侵能力[J]. 生态学杂志, 2007, 26(9): 1438-1444. [LU Xiamei, ZHOU Changfang, AN Shuqing, et al. Phenotypic plasticity, allometry and invasiveness of plants [J]. Chinese Journal of Ecology, 2007, 26(9): 1438-1444] DOI: 10.13292/j/1000-4890.2007.0248
[14] 范昊明, 王铁良, 周丽丽, 等. 不同坡形坡面径流流速时空分异特征研究[J]. 水土保持学报, 2007, 21(6): 35-38. [FAN Haoming, WANG Tieliang, ZHOU Lili, et al. Study on temporal and spatial variation of current velocity on different form slopes [J]. Journal of Soil and Water Conservation, 2007, 21(6): 35-38] DOI: 10.13870/j.cnki.stbcxb.2007.06.007
[15] 范世香, 韩绍文. 地面坡度对地表径流影响的实验研究[J]. 水土保持通报, 1991, 11(4): 6-10. [FAN Shixiang, HAN Shaowen. Testing research on the effects of land sruface slopes upon surface runoff [J]. Bulletin of Soil and Water Conservation, 1991, 11(4): 6-10] DOI: 10.13961/j.cnki.stbctb.1991.04.002
[16] 刘佳凯, 崔保山, 张振明, 等. 黄河三角洲横向水文结构连结空间尺度变异性分析[J].生态学报, 2021, 41(10): 3745-3754. [LIU Jiakai, CUI Baoshan, ZHANG Zhenming, et al. Scale effects of structural hydrological connectivity in coast wetlands in the Yellow River Delta [J]. Acta Ecologica Sinica, 2021, 41(10): 3745-3754] DOI: 10.5846/stxb202007221923
[17] ZHANG Cheng, KUAI Shengyang, TANG Caihong, et al. Evaluation of hydrological connectivity in a river floodplain system and its influence on the vegetation coverage [J]. Ecological Indicators, 2022, 144(9): 109445. DOI: 10.1016/j.ecolind.2022.109445
[18] CUI Yuan, XIAO Rong, ZHANG Mingxiang, et al. Hydrological connectivity dynamics and conservation priorities for surface-water patches in the Yellow River Delta National Nature Reserve, China [J]. Ecohydrology and Hydrobiology, 2020, 20(2): 525-536. DOI: 10.1016/j.ecohyd.2020.03.005
[19] YANG Jun, CHU Xuefeng. Quantification of the spatio-temporal variations in hydrologic connectivity of small-scale topographic surfaces under various rainfall conditions [J]. Journal of Hydrology, 2013, 505(15): 65-77. DOI: 10.1016/j.jhydrol.2013.09.013
[20] 赵荟, 朱清科, 秦伟, 等. 黄土高原干旱阳坡微地形土壤水分特征研究[J]. 水土保持通报, 2010, 30(3): 64-68. [ZHAO Hui, ZHU Qingke, QIN Wei, et al. Soil moisture characteristics on microrelief of dry south-slope on the Loess Plateau [J]. Bulletin of Soil and Water Conservation, 2010, 30(3): 64-68] DOI: 10.13961/j.cnki.stbctb.2010.03.027
[21] 朱清科, 张岩, 赵磊磊, 等. 陕北黄土高原植被恢复及近自然造林[M]. 北京: 科学出版社, 2012: 43-69. [ZHU Qingke, ZHANG Yan, ZHAO Leilei, et al. Vegetation restoration and natural afforestation in the Loess Plateau of northern Shaanxi [M]. Beijing: Science Press, 2012: 43-69]
[22] 王盛萍, 姚安坤, 赵小婵. 基于人工降雨模拟试验的坡面水文连通性[J]. 水科学进展, 2014, 25(4): 526-533. [WANG Shengping, YAO Ankun, ZHAO Xiaochan. Analyzing hydrological connectivity for a slope-surface on the basis of rainfall simulation experiment [J]. Advances in Water Science, 2014, 25(4): 526-533] DOI: 10.14042/j.cnki.32.1309.2014.04.004
[23] 宋述军, 李辉霞, 张建国. 黄土高原坡地单株植物下的微地形研究[J]. 山地学报, 2003, 21(1): 106-109. [SONG Shujun, LI Huixia, ZHANG Jianguo. Microtopographic structures study of individual plants on Loss Plateau [J]. Mountain Research, 2003, 21(1): 106-109] DOI: 10.16089/j.cnki.1008-2786.2003.01.017
[24] 马勇勇, 李占斌, 任宗萍, 等. 草带布设位置对坡沟系统水文连通性的影响[J]. 农业工程学报, 2018, 34(8): 170-176. [MA Yongyong, LI Zhanbin, REN Zongping, et al. Effect of different positions of grass strips on hydrological connectivity in slope-gully system [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8): 170-176] DOI: 10.11975/j.issn.1002-6819.2018.08.022
[25] BERRY Z C, GOTSCH S G, HOLWERDA F, et al. Slope position influences vegetation-atmosphere interactions in a tropical montane cloud forest [J]. Agricultural and Forest Meteorology, 2016, 221(1): 207-218. DOI: 10.1016/j.agrformet.2016.02.012
[26] FAN Bihang, TAO Wanghai, QIN Guanghua, et al. Soil micro-climate variation in relation to slope aspect, position, and curvature in a forested catchment [J]. Agricultural and Forest Meteorology, 2020, 290(15): 107999. DOI: 10.1016/j.agrformet.2020.107999
[27] XIAO Sa, CHEN Shuyan, ZHAO Luqiang, et al. Density effects on plant height growth and inequality in sunflower populations [J]. Journal of Integrative Plant Biology, 2006, 48(5): 513-519. DOI: 10.1111/j.1744-7909.2006.00265.x
[28] PUTTOCK A, MACLEOD C J A, BOL R, et al. Changes in ecosystem structure, function and hydrological connectivity control water, soil and carbon losses in semi-arid grass to woody vegetation transitions [J]. Earth Surface Processes and Landforms, 2013, 38(13): 1602-1611. DOI: 10.1002/esp.3455

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-01-04; 修回日期(Accepted date):2023-06-16
基金项目(Foundation item): 国家自然科学基金(42271302,42071239)。[National Natural Science Foundation of China(42271302,42071239)]
更新日期/Last Update: 2023-05-30