参考文献/References:
[1] ETHERIDGE D M, STEELE L P, FRANCEY R J, et al. Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D13): 15979-15993. DOI: 10.1029/98JD00923
[2] KIRSCHKE S, BOUSQUET P, CIAIS P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6(10): 813-823. DOI: 10.1038/NGEO1955
[3] FLETCHER S E M, SCHAEFER H. Rising methane: A new climate challenge[J]. Science, 2019, 364(6444): 932-933. DOI: 10.1126/science.aax1828
[4] FRANKENBERG C, MEIRINK J F, VAN WEELE M, et al. Assessing methane emissions from global space-borne observations[J]. Science, 2005, 308(5724): 1010-1014. DOI: 10.1126/science.1106644
[5] MYHRE G, SHINDELL D, BRÉON FM, et al. Anthropogenic and natural radiative forcing [G]//STOCKER T F, QIN Dahe, PLATTNER G K, et al. Climate change 2013: The physical science basis. Cambridge: Cambridge University Press, 2013: 659-740.
[6] SAUNOIS M, STAVERT A R, POULTER B, et al. The global methane budget 2000-2017[J]. Earth System Science Data, 2020, 12(3): 1561-1623. DOI: 10.5194/essd-12-1561-2020
[7] DENMAN K L, BRASSEUR G, CHIDTHAISONG A, et al. Couplings between changes in the climate system and biogeochemistry[G]//SOLOMON S, QIN Dahe, MANNING M, et al. Climate change 2007: The physical science basis. Cambridge: Cambridge University Press, 2007: 499-587.
[8] FENG Huili, GUO Jiahuan, PENG Changhui, et al. Global estimates of forest soil methane flux identify a temperate and tropical forest methane sink[J]. Geoderma, 2023, 429: 116239. DOI: 10.1016/J.GEODERMA.2022.116239
[9] MEUNIER C L, GUNDALE M J, SÁNCHEZ I S, et al. Impact of nitrogen deposition on forest and lake food webs in nitrogen‐limited environments[J]. Global Change Biology, 2016, 22(1): 164-179. DOI: 10.1111/gcb.12967
[10] GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293-296. DOI: 10.1038/nature06592
[11] 何姗, 刘娟, 姜培坤, 等.全球变化对森林土壤甲烷吸收的影响及其机制研究进展[J].应用生态学报, 2019, 30(2): 677-684. [HE Shan, LIU Juan, JIANG Peikun, et al.Effects of global change on methane uptake in forest soils and its mechanisms: A review [J].Chinese Journal of Applied Ecology, 2019, 30(2): 677-684 ]DOI: 10.13287/j.1001-9332.201902.028
[12] 程淑兰, 方华军, 于贵瑞, 等.森林土壤甲烷吸收的主控因子及其对增氮的响应研究进展[J].生态学报, 2012, 32(15): 4914-4923. [CHENG Shulan, FANG Huajun, YU Guirui, et al. The primary factors controlling methane uptake from forest soils and their responses to increased atmospheric nitrogen deposition: A review [J]. Acta Ecologica Sinica, 2012, 32(15): 4914-4923] DOI: 10.5846/stxb201111101703
[13] ZHANG Wei, MO Jiangming, ZHOU Guoyi, et al. Methane uptake responses to nitrogen deposition in three tropical forests in southern China[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D11116. DOI: 10.1029/2007JD009195
[14] XIA Nan, DU Enzai, WU Xinhui, et al. Effects of nitrogen addition on soil methane uptake in global forest biomes[J]. Environmental Pollution, 2020, 264: 114751. DOI: 10.1016/j.envpol.2020.114751
[15] WU Fangtao, PENG Changhui, WANG Chuanyao, et al. Responses of soil CH4 fluxes to nitrogen addition in two tropical montane rainforests in southern China[J]. Forest Ecosystems, 2022, 9: 100031. DOI: 10.1016/j.fecs.2022.100031
[16] 莫江明, 方运霆, 徐国良, 等. 鼎湖山苗圃和主要森林土壤CO2排放和CH4吸收对模拟N沉降的短期响应[J]. 生态学报, 2005, 25(4): 682-690. [MO Jiangming, FANG Yunting, XU Guoliang, et al. The short-term responses of soil CO2 emission and CH4 uptake to simulated N deposition in nursery and forests of Dinghushan in subtropical China [J]. Acta Ecologica Sinica. 2005, 25(4): 682-690]DOI: 10.3321/j.issn:1000-0933.2005.04.005
[17] BORKEN W, BRUMME R. Methane uptake by temperate forest soils[J]. Functioning and Management of European Beech Ecosystems, 2009: 369-385. DOI: 10.1007/978-3-642-00340-0-19
[18] AMBUS P, ROBERTSON G P. The effect of increased N deposition on nitrous oxide, methane and carbon dioxide fluxes from unmanaged forest and grassland communities in Michigan[J]. Biogeochemistry, 2006, 79: 315-337. DOI: 10.1007/s10533-005-5313-x
[19] GULLEDGE J, HRYWNA Y, CAVANAUGH C, et al. Effects of long-term nitrogen fertilization on the uptake kinetics of atmospheric methane in temperate forest soils[J]. FEMS Microbiology Ecology, 2004, 49(3): 389-400. DOI: 10.1016/S0168-6496(04)00149-7
[20] PENG Yuanrui, WANG Tao, CHANG Ruiying. An increasing trend of inorganic nitrogen deposition across montane regions of China[J]. Atmospheric Environment, 2023, 304: 119780. DOI: 10.1016/j.atmosenv.2023.119780
[21] LE MER J, ROGER P. Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 2001, 37(1): 25-50. DOI: 10.1016/S1164-5563(01)01067-6
[22] BODELIER P L E, LAANBROEK H J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments[J]. FEMS Microbiology Ecology, 2004, 47(3): 265-277. DOI: 10.1016/S0168-6496(03)00304-0
[23] 张丹丹, 莫柳莹, 陈新, 等.氮沉降对温带森林土壤甲烷氧化菌的影响[J].生态学报, 2017, 37(24): 8254-8263. [ZHANG Dandan, MO Liuying, CHEN Xin, et al. Effects of nitrogen addition on Methanotrophs in temperate forest soil[J]. Acta Ecologica Sinica, 2017, 37(24): 8254-8263]DOI: 10.5846/stxb201701080064
[24] 邓湘雯, 杨晶晶, 陈槐, 等. 森林土壤氧化(吸收)甲烷研究进展[J]. 生态环境学报, 2012, 21(3): 577-583. [DENG Xiangwen, YANG Jingjing, CHEN Huai, et al.Advances in the research of methane oxidation in forest soils [J]. Ecology and Environmental Sciences, 2012, 21(3): 577-583]DOI: 10.3969/j.issn.1674-5906.2012.03.031
[25] TIAN Jing, DUNGAIT J A J, LU Xiankai, et al. Long‐term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil[J]. Global Change Biology, 2019, 25(10): 3267-3281. DOI: 10.1111/gcb.14750
[26] ZHOU Zhenghu, WANG Chuankuan, ZHENG Mianhai, et al. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition[J]. Soil Biology and Biochemistry, 2017, 115: 433-441. DOI: 10.1016/j.soilbio.2017.09.015
[27] 王晶苑, 张心昱, 温学发, 等. 氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制[J]. 生态学报, 2013, 33(5): 1337-1346. [WANG Jingyuan, ZHANG Xinyu, WEN Xuefa, et al.The effect of nitrogen deposition on forest soil organic matter and litter decomposition and the microbial mechanism[J]. Acta Ecologica Sinica, 2013, 33(5): 1337-1346]DOI: 10.5846/stxb201204300621
[28] 方华, 莫江明. 氮沉降对森林凋落物分解的影响[J]. 生态学报, 2006, 26(9): 3127-3136. [FANG Hua, MO Jiangming. Effects of nitrogen deposition on forest litter decomposition[J]. Acta Ecologica Sinica, 2006, 26(9): 3127-3136]DOI: 10.3321/j.issn: 1000-0933.2006.09.043
[29] JOHNSON J, PANNATIER G E, CARNICELLI S, et al. The response of soil solution chemistry in European forests to decreasing acid deposition[J]. Global Change Biology, 2018, 24(8): 3603-3619. DOI: 10.1111/gcb.14156
[30] KING G M, ADAMSEN A P S. Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph methylomonas rubra[J]. Applied and Environmental Microbiology, 1992, 58(9): 2758-2763. DOI: 10.1128/AEM.58.9.2758-2763.1992
[31] 梁战备, 史奕, 王琛瑞, 等. 长白山阔叶红松林不同深度森林土壤CH4氧化研究[J]. 应用生态学报, 2003, 14(12): 2269-2272. [LIANG Zhanbei, SHI Yi, WANG Chenrui, et al. Methane oxidation in soil profiles of broad-leaved Korean pine mixed forest in Changbai Mountain[J].Chinese Journal of Applied Ecology, 2003, 14(12): 2269-2272]DOI: 10.13287/j.1001-9332.2003.0501
[32] 刘洋荧, 王尚, 厉舒祯, 等. 基于功能基因的微生物碳循环分子生态学研究进展[J]. 微生物学通报, 2017, 44(7): 1676-1689. [LIU Yangying, WANG Shang, LI Shuzhen, et al.Advances in molecular ecology on microbial functional genes of carbon cycle [J]. Microbiology China, 2017, 44(7): 1676-1689]DOI: 10.13344/j.microbiol.china.160941
[33] 尹明珍, 郭婉玑, 朱晓敏, 等. 氮沉降下西南亚高山针叶林生长的养分限制特征[J]. 应用与环境生物学报, 2021, 27(1): 1-7. [YIN Mingzhen, GUO Wanji, ZHU Xiaomin, et al. Nutrient limiting characteristics of subalpine coniferous forests under conditions of nitrogen deposition in the southwest mountains of China [J].Chinese Journal of Applied Environmental Biology, 2021, 27(1): 1-7]DOI: 10.19675/j.cnki.1006-687x.2020.07040
[34] CHANG Ruiying, LI Na, SUN Xiangyang, et al. Nitrogen addition reduces dissolved organic carbon leaching in a montane forest[J]. Soil Biology and Biochemistry, 2018, 127: 31-38. DOI: 10.1016/j.soilbio.2018.09.006
[35] CHENG Yi, WANG Jing, CHANG S X, et al. Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: A review[J]. Environmental Pollution, 2019, 244: 608-616. DOI: 10.1016/j.envpol.2018.10.054
[36] TIAN Di, DU Enzai, JIANG Lai, et al. Responses of forest ecosystems to increasing N deposition in China: A critical review[J]. Environmental Pollution, 2018, 243: 75-86. DOI: 10.1016/j.envpol.2018.08.010
[37] DU Enzai, JIANG Yuan, FANG Jingyun, et al. Inorganic nitrogen deposition in China's forests: Status and characteristics[J]. Atmospheric Environment, 2014, 98: 474-482. DOI: 10.1016/j.atmosenv.2014.09.005
[38] YU Guirui, JIA Yanlong, HE Nianpeng, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6): 424-429. DOI: 10.1038/s41561-019-0352-4
[39] BITTELLI M. Measuring soil water content: A review[J]. Horttechnology, 2011, 21(3): 293-300. DOI: 10.1016/j.scienta.2011.03.038
[40] MULVANEY R L. Nitrogen-inorganic forms[J]. Methods of Soil Analysis: Part 3 Chemical Methods, 1996, 5: 1123-1184. DOI: 10.2136/sssabookser5.3.c38
[41] ZHENG Bangxiao, ZHU Yongguan, SARDANS J, et al. QMEC: A tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling[J]. Science China: Life Sciences, 2018, 61: 1451-1462. DOI: 10.1007/s11427-018-9364-7
[42] URMANN K, SCHROTH M H, ZEYER J. Recovery of in-situ methanotrophic activity following acetylene inhibition[J]. Biogeochemistry, 2008, 89: 347-355. DOI: 10.1007/s10533-008-9223-6
[43] BATES D. Lme4: Linear Mixed-Effects Models Using ‘Eigen' and S4. R package version 1.1-34[DB/OL].[2022-11-01]. https: //cran.r-project.org/web/packages/lme4/index.html
[44] LENTH R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1.8.2[DB/OL].[2022-11-01]. https: //CRAN.R-project.org/package=emmeans
[45] SAARI A, HEISKANEN J, MARTIKAINEN P J. Effect of the organic horizon on methane oxidation and uptake in soil of a boreal Scots pine forest[J]. FEMS Microbiology Ecology, 1998, 26(3): 245-255. DOI: 10.1111/j.1574-6941.1998.tb00509.x
[46] ISHIZUKA S, SAKATA T, ISHIZUKA K. Methane oxidation in Japanese forest soils[J]. Soil Biology and Biochemistry, 2000, 32(6): 769-777. DOI: 10.1016/S0038-0717(99)00200-X
[47] BORKEN W, BEESE F. Methane and nitrous oxide fluxes of soils in pure and mixed stands of European beech and Norway spruce[J]. European Journal of Soil Science, 2006, 57(5): 617-625. DOI: 10.1111/j.1365-2389.2005.00752.x
[48] KOSCHORRECK M, CONRAD R. Oxidation of atmospheric methane in soil: Measurements in the field, in soil cores and in soil samples[J]. Global Biogeochemical Cycles, 1993, 7(1): 109-121. DOI: 10.1029/92GB02814
[49] ANGEL R, CONRAD R. In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils[J]. Environmental Microbiology, 2009, 11(10): 2598-2610. DOI: 10.1111/j.1462-2920.2009.01984.x
[50] TERÁN E J, PRIANO M E, JULIARENA M P, et al. Pine afforestation improves the biological soil attributes linked to methane oxidation in a temperate zone of Argentina[J]. Cerne, 2022, 28: e-102967. DOI: 10.1590/01047760202228012967
[51] CAI Zucong, YAN Xiaoyuan. Kinetic model for methane oxidation by paddy soil as affected by temperature, moisture and N addition[J]. Soil Biology and Biochemistry, 1999, 31(5): 715-725. DOI: 10.1016/S0038-0717(98)00170-9
[52] WANG Zhiping, INESON P. Methane oxidation in a temperate coniferous forest soil: Effects of inorganic N[J]. Soil Biology and Biochemistry, 2003, 35(3): 427-433. DOI: 10.1016/j.soilbio.2004.06.002
[53] MAURER D, KOLB S, HAUMAIER L, et al. Inhibition of atmospheric methane oxidation by monoterpenes in Norway spruce and European beech soils[J]. Soil Biology and Biochemistry, 2008, 40(12): 3014-3020. DOI: 10.1016/j.soilbio.2008.08.023
[54] SCHNELL S, KING G M. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils[J]. Applied and Environmental Microbiology, 1994, 60(10): 3514-3521.
[55] STEINKAMP R, BUTTERBACH-BAHL K, PAPEN H. Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany[J]. Soil Biology and Biochemistry, 2001, 33(2): 145-153. DOI: 10.1128/AEM.60.10.3514-3521.1994
[56] SABREKOV A F, DANILOVA O V, TERENTIEVA I E, et al. Atmospheric methane consumption and methanotroph communities in west Siberian Boreal upland forest ecosystems[J]. Forests, 2021, 12(12): 1738. DOI: 10.3390/f12121738
[57] 张金凤, 杨智杰, 谢锦升, 等. 两种亚热带森林土壤甲烷氧化活性的垂直分布特征[J]. 亚热带资源与环境学报, 2015, 10(4): 1-7. [ZHANG Jinfeng, YANG Zhijie, XIE Jinsheng, et al. Vertical distribution of methane oxidation activity in two sub-tropic forest soils [J]. Journal of Subtropical Resources and Environment, 2015, 10(4): 1-7]DOI: 10.3969/j.issn.1673-7105.2015.04.001
[58] LI Quan, PENG Changhui, ZHANG Junbo, et al. Nitrogen addition decreases methane uptake caused by methanotroph and methanogen imbalances in a Moso bamboo forest[J]. Scientific Reports, 2021, 11(1): 1-14. DOI: 10.1038/s41598-021-84422-3
[59] 孙万龙, 孙志高, 孙文广, 等. 黄河口潮滩湿地土壤 CH4氧化潜力及其对有机物输入的响应[J]. 草业学报, 2014, 23(1): 104-112. [SUN Wanlong, SUN Zhigao, SUN Wenguang, et al. The methane oxidation potential of soils in tidal marshes of the Yellow River Estuary and its response to import of organic matter [J]. Acta Prataculturae Sinica, 2014, 23(1): 104-112]DOI: 10.11686/cyxb20140113
[60] 杨铭德, 焦燕, 李新, 等. 外源盐对不同盐碱程度土壤 CH4吸收潜力的影响[J]. 环境科学学报, 2017, 37(2): 737-746. [YANG Mingde, JIAO Yan, LI Xin, et al.Influence of exogenous salt on CH4 absorption potential indifferent saline-alkaline soils [J]. Acta Scientiae Circumstantiae, 2017, 37(2): 737-746]DOI: 10.13671/j.hjkxxb.2016.0162
[61] DEGELMANN D M, BORKEN W, DRAKE H L, et al. Different atmospheric methane-oxidizing communities in European beech and Norway spruce soils[J]. Applied and Environmental Microbiology, 2010, 76(10): 3228-3235. DOI: 10.1128/AEM.02730-09
[62] HENCKEL T, ROSLEV P, CONRAD R. Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil[J]. Environmental Microbiology, 2000, 2(6): 666-679. DOI: 10.1046/j.1462-2920.2000.00149.x
[63] LIU Junhua, XU Yunjian, ZHU Yingmo, et al. Enhanced soil methane oxidation in both organic layer and topsoil during the succession of subtropical forests[J]. Process Safety and Environmental Protection, 2023, 170: 865-876. DOI: 10.1016/j.psep.2022.12.064
[64] WAGNER D, LIPSKI A, EMBACHER A, et al. Methane fluxes in permafrost habitats of the Lena Delta: Effects of microbial community structure and organic matter quality[J]. Environmental Microbiology, 2005, 7(10): 1582-1592. DOI: 10.1111/J.1462-2920.2005.00849.x
[65] 齐润杰, 陈金霞, 但建国. 外源氮对琼北不同类型土壤甲烷氧化能力的影响[J]. 热带作物学报, 2016, 37(8): 1534-1539. [QI Runjie, CHEN Jinxia, DAN Jianguo.Effects of exogenous nitrogen on methane oxidation in upland soils of different types in northern Hainan Island [J].Chinese Journal of Tropical Crops, 2016, 37(8): 1534-1539] DOI: 10.3969/j.issn.1000-2561.2016.08.015
[66] MISHRA V K, SHUKLA R, SHUKLA P N. Inhibition of soil methane oxidation by fertilizer application: An intriguing but persistent paradigm[J]. Environmental Pollution and Protection, 2018, 3(2): 57-69. DOI: 10.22606/epp.2018.32001
[67] CHANG Ruiying, LIU Xinyu, WANG Tao, et al. Stimulated or inhibited response of methane flux to nitrogen addition depends on nitrogen levels[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(11): e2021JG006600. DOI: 10.1029/2021JG006600