[1]刘新雨,敖 静,王 涛*,等.氮添加对西南亚高山针叶林不同深度土壤甲烷吸收潜力的影响[J].山地学报,2023,(3):386-398.[doi:10.16089/j.cnki.1008-2786.000756 ]
 LIU Xinyu,AO Jing,WANG Tao*,et al.Effects of Nitrogen Addition on Soil Methane Uptake Potentialsat Different Depths of a Subalpine Coniferous Forest in Southwest China[J].Mountain Research,2023,(3):386-398.[doi:10.16089/j.cnki.1008-2786.000756 ]
点击复制

氮添加对西南亚高山针叶林不同深度土壤甲烷吸收潜力的影响
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第3期
页码:
386-398
栏目:
山地环境
出版日期:
2023-05-25

文章信息/Info

Title:
Effects of Nitrogen Addition on Soil Methane Uptake Potentialsat Different Depths of a Subalpine Coniferous Forest in Southwest China
文章编号:
1008-2786-(2023)3-386-9
作者:
刘新雨12敖 静12王 涛1*常瑞英1
(1.中国科学院、水利部成都山地灾害与环境研究所,成都610041; 2.中国科学院大学,北京100049)
Author(s):
LIU Xinyu12 AO Jing1 2 WANG Tao1* CHANG Ruiying1
(1.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
氮沉降 森林土壤 甲烷氧化 微生物功能基因 贡嘎山
Keywords:
nitrogen deposition forest soil methane oxidation microbial functional genes Mt. Gongga
分类号:
X1
DOI:
10.16089/j.cnki.1008-2786.000756
文献标志码:
A
摘要:
森林土壤是重要的大气CH4汇,氮添加可能增加、抑制或不影响森林土壤CH4吸收。亚高山针叶林是中国西南森林的主体,针对氮添加对亚高山针叶林土壤CH4吸收影响的研究并不充分。本研究依托贡嘎山亚高山针叶林开展氮沉降(氮添加)试验,结合室内微宇宙实验及微生物功能基因分析,测定不同深度土壤在标准实验条件下的CH4吸收速率,明确亚高山针叶林不同深度土壤CH4吸收潜力对氮添加的差异性响应规律及CH4氧化功能基因的调控作用。结果显示:(1)同一氮添加处理下,土壤CH4吸收速率由大到小为矿质层0~5 cm、矿质层5~10 cm、有机层,氮添加未改变土壤CH4吸收潜力的剖面垂直分布规律。(2)氮添加对有机层CH4吸收速率无显著影响(P>0.05),但促进了矿质层土壤的CH4吸收速率。低氮和高氮添加分别促进矿质层0~5 cm土壤CH4吸收142%和58%,促进5~10 cm土壤CH4吸收2550%和650%。(3)CH4氧化功能基因丰度是调控不同土层CH4吸收速率的重要因素,而较高的铵态氮浓度会改变功能基因丰度与CH4吸收速率的相关关系。本研究深化了氮添加对西南典型亚高山森林土壤CH4吸收影响的认识,可为大气氮沉降背景下区域森林土壤CH4汇的准确核算提供科学依据。
Abstract:
Forest soils are important atmospheric CH4 sinks. Nitrogen addition may increase, inhibit, or not affect CH4 uptake in forest soils. Subalpine coniferous forests are the mainstay of forests in southwest China, which are largely affected by elevated atmospheric nitrogen(N)deposition. Unfortunately, there was not adequate research on the effect of nitrogen addition on CH4 absorption in subalpine coniferous forest soil. Previous studies mostly concerned about the general functions of N deposition on CH4 uptake as per a whole soil profile; however, the distribution of soil CH4 uptake potential at different soil depths and how it is affected by N deposition had remained unclear.

参考文献/References:

[1] ETHERIDGE D M, STEELE L P, FRANCEY R J, et al. Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D13): 15979-15993. DOI: 10.1029/98JD00923
[2] KIRSCHKE S, BOUSQUET P, CIAIS P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6(10): 813-823. DOI: 10.1038/NGEO1955
[3] FLETCHER S E M, SCHAEFER H. Rising methane: A new climate challenge[J]. Science, 2019, 364(6444): 932-933. DOI: 10.1126/science.aax1828
[4] FRANKENBERG C, MEIRINK J F, VAN WEELE M, et al. Assessing methane emissions from global space-borne observations[J]. Science, 2005, 308(5724): 1010-1014. DOI: 10.1126/science.1106644
[5] MYHRE G, SHINDELL D, BRÉON FM, et al. Anthropogenic and natural radiative forcing [G]//STOCKER T F, QIN Dahe, PLATTNER G K, et al. Climate change 2013: The physical science basis. Cambridge: Cambridge University Press, 2013: 659-740.
[6] SAUNOIS M, STAVERT A R, POULTER B, et al. The global methane budget 2000-2017[J]. Earth System Science Data, 2020, 12(3): 1561-1623. DOI: 10.5194/essd-12-1561-2020
[7] DENMAN K L, BRASSEUR G, CHIDTHAISONG A, et al. Couplings between changes in the climate system and biogeochemistry[G]//SOLOMON S, QIN Dahe, MANNING M, et al. Climate change 2007: The physical science basis. Cambridge: Cambridge University Press, 2007: 499-587.
[8] FENG Huili, GUO Jiahuan, PENG Changhui, et al. Global estimates of forest soil methane flux identify a temperate and tropical forest methane sink[J]. Geoderma, 2023, 429: 116239. DOI: 10.1016/J.GEODERMA.2022.116239
[9] MEUNIER C L, GUNDALE M J, SÁNCHEZ I S, et al. Impact of nitrogen deposition on forest and lake food webs in nitrogen‐limited environments[J]. Global Change Biology, 2016, 22(1): 164-179. DOI: 10.1111/gcb.12967
[10] GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293-296. DOI: 10.1038/nature06592
[11] 何姗, 刘娟, 姜培坤, 等.全球变化对森林土壤甲烷吸收的影响及其机制研究进展[J].应用生态学报, 2019, 30(2): 677-684. [HE Shan, LIU Juan, JIANG Peikun, et al.Effects of global change on methane uptake in forest soils and its mechanisms: A review [J].Chinese Journal of Applied Ecology, 2019, 30(2): 677-684 ]DOI: 10.13287/j.1001-9332.201902.028
[12] 程淑兰, 方华军, 于贵瑞, 等.森林土壤甲烷吸收的主控因子及其对增氮的响应研究进展[J].生态学报, 2012, 32(15): 4914-4923. [CHENG Shulan, FANG Huajun, YU Guirui, et al. The primary factors controlling methane uptake from forest soils and their responses to increased atmospheric nitrogen deposition: A review [J]. Acta Ecologica Sinica, 2012, 32(15): 4914-4923] DOI: 10.5846/stxb201111101703
[13] ZHANG Wei, MO Jiangming, ZHOU Guoyi, et al. Methane uptake responses to nitrogen deposition in three tropical forests in southern China[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D11116. DOI: 10.1029/2007JD009195
[14] XIA Nan, DU Enzai, WU Xinhui, et al. Effects of nitrogen addition on soil methane uptake in global forest biomes[J]. Environmental Pollution, 2020, 264: 114751. DOI: 10.1016/j.envpol.2020.114751
[15] WU Fangtao, PENG Changhui, WANG Chuanyao, et al. Responses of soil CH4 fluxes to nitrogen addition in two tropical montane rainforests in southern China[J]. Forest Ecosystems, 2022, 9: 100031. DOI: 10.1016/j.fecs.2022.100031
[16] 莫江明, 方运霆, 徐国良, 等. 鼎湖山苗圃和主要森林土壤CO2排放和CH4吸收对模拟N沉降的短期响应[J]. 生态学报, 2005, 25(4): 682-690. [MO Jiangming, FANG Yunting, XU Guoliang, et al. The short-term responses of soil CO2 emission and CH4 uptake to simulated N deposition in nursery and forests of Dinghushan in subtropical China [J]. Acta Ecologica Sinica. 2005, 25(4): 682-690]DOI: 10.3321/j.issn:1000-0933.2005.04.005
[17] BORKEN W, BRUMME R. Methane uptake by temperate forest soils[J]. Functioning and Management of European Beech Ecosystems, 2009: 369-385. DOI: 10.1007/978-3-642-00340-0-19
[18] AMBUS P, ROBERTSON G P. The effect of increased N deposition on nitrous oxide, methane and carbon dioxide fluxes from unmanaged forest and grassland communities in Michigan[J]. Biogeochemistry, 2006, 79: 315-337. DOI: 10.1007/s10533-005-5313-x
[19] GULLEDGE J, HRYWNA Y, CAVANAUGH C, et al. Effects of long-term nitrogen fertilization on the uptake kinetics of atmospheric methane in temperate forest soils[J]. FEMS Microbiology Ecology, 2004, 49(3): 389-400. DOI: 10.1016/S0168-6496(04)00149-7
[20] PENG Yuanrui, WANG Tao, CHANG Ruiying. An increasing trend of inorganic nitrogen deposition across montane regions of China[J]. Atmospheric Environment, 2023, 304: 119780. DOI: 10.1016/j.atmosenv.2023.119780
[21] LE MER J, ROGER P. Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 2001, 37(1): 25-50. DOI: 10.1016/S1164-5563(01)01067-6
[22] BODELIER P L E, LAANBROEK H J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments[J]. FEMS Microbiology Ecology, 2004, 47(3): 265-277. DOI: 10.1016/S0168-6496(03)00304-0
[23] 张丹丹, 莫柳莹, 陈新, 等.氮沉降对温带森林土壤甲烷氧化菌的影响[J].生态学报, 2017, 37(24): 8254-8263. [ZHANG Dandan, MO Liuying, CHEN Xin, et al. Effects of nitrogen addition on Methanotrophs in temperate forest soil[J]. Acta Ecologica Sinica, 2017, 37(24): 8254-8263]DOI: 10.5846/stxb201701080064
[24] 邓湘雯, 杨晶晶, 陈槐, 等. 森林土壤氧化(吸收)甲烷研究进展[J]. 生态环境学报, 2012, 21(3): 577-583. [DENG Xiangwen, YANG Jingjing, CHEN Huai, et al.Advances in the research of methane oxidation in forest soils [J]. Ecology and Environmental Sciences, 2012, 21(3): 577-583]DOI: 10.3969/j.issn.1674-5906.2012.03.031
[25] TIAN Jing, DUNGAIT J A J, LU Xiankai, et al. Long‐term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil[J]. Global Change Biology, 2019, 25(10): 3267-3281. DOI: 10.1111/gcb.14750
[26] ZHOU Zhenghu, WANG Chuankuan, ZHENG Mianhai, et al. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition[J]. Soil Biology and Biochemistry, 2017, 115: 433-441. DOI: 10.1016/j.soilbio.2017.09.015
[27] 王晶苑, 张心昱, 温学发, 等. 氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制[J]. 生态学报, 2013, 33(5): 1337-1346. [WANG Jingyuan, ZHANG Xinyu, WEN Xuefa, et al.The effect of nitrogen deposition on forest soil organic matter and litter decomposition and the microbial mechanism[J]. Acta Ecologica Sinica, 2013, 33(5): 1337-1346]DOI: 10.5846/stxb201204300621
[28] 方华, 莫江明. 氮沉降对森林凋落物分解的影响[J]. 生态学报, 2006, 26(9): 3127-3136. [FANG Hua, MO Jiangming. Effects of nitrogen deposition on forest litter decomposition[J]. Acta Ecologica Sinica, 2006, 26(9): 3127-3136]DOI: 10.3321/j.issn: 1000-0933.2006.09.043
[29] JOHNSON J, PANNATIER G E, CARNICELLI S, et al. The response of soil solution chemistry in European forests to decreasing acid deposition[J]. Global Change Biology, 2018, 24(8): 3603-3619. DOI: 10.1111/gcb.14156
[30] KING G M, ADAMSEN A P S. Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph methylomonas rubra[J]. Applied and Environmental Microbiology, 1992, 58(9): 2758-2763. DOI: 10.1128/AEM.58.9.2758-2763.1992
[31] 梁战备, 史奕, 王琛瑞, 等. 长白山阔叶红松林不同深度森林土壤CH4氧化研究[J]. 应用生态学报, 2003, 14(12): 2269-2272. [LIANG Zhanbei, SHI Yi, WANG Chenrui, et al. Methane oxidation in soil profiles of broad-leaved Korean pine mixed forest in Changbai Mountain[J].Chinese Journal of Applied Ecology, 2003, 14(12): 2269-2272]DOI: 10.13287/j.1001-9332.2003.0501
[32] 刘洋荧, 王尚, 厉舒祯, 等. 基于功能基因的微生物碳循环分子生态学研究进展[J]. 微生物学通报, 2017, 44(7): 1676-1689. [LIU Yangying, WANG Shang, LI Shuzhen, et al.Advances in molecular ecology on microbial functional genes of carbon cycle [J]. Microbiology China, 2017, 44(7): 1676-1689]DOI: 10.13344/j.microbiol.china.160941
[33] 尹明珍, 郭婉玑, 朱晓敏, 等. 氮沉降下西南亚高山针叶林生长的养分限制特征[J]. 应用与环境生物学报, 2021, 27(1): 1-7. [YIN Mingzhen, GUO Wanji, ZHU Xiaomin, et al. Nutrient limiting characteristics of subalpine coniferous forests under conditions of nitrogen deposition in the southwest mountains of China [J].Chinese Journal of Applied Environmental Biology, 2021, 27(1): 1-7]DOI: 10.19675/j.cnki.1006-687x.2020.07040
[34] CHANG Ruiying, LI Na, SUN Xiangyang, et al. Nitrogen addition reduces dissolved organic carbon leaching in a montane forest[J]. Soil Biology and Biochemistry, 2018, 127: 31-38. DOI: 10.1016/j.soilbio.2018.09.006
[35] CHENG Yi, WANG Jing, CHANG S X, et al. Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: A review[J]. Environmental Pollution, 2019, 244: 608-616. DOI: 10.1016/j.envpol.2018.10.054
[36] TIAN Di, DU Enzai, JIANG Lai, et al. Responses of forest ecosystems to increasing N deposition in China: A critical review[J]. Environmental Pollution, 2018, 243: 75-86. DOI: 10.1016/j.envpol.2018.08.010
[37] DU Enzai, JIANG Yuan, FANG Jingyun, et al. Inorganic nitrogen deposition in China's forests: Status and characteristics[J]. Atmospheric Environment, 2014, 98: 474-482. DOI: 10.1016/j.atmosenv.2014.09.005
[38] YU Guirui, JIA Yanlong, HE Nianpeng, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6): 424-429. DOI: 10.1038/s41561-019-0352-4
[39] BITTELLI M. Measuring soil water content: A review[J]. Horttechnology, 2011, 21(3): 293-300. DOI: 10.1016/j.scienta.2011.03.038
[40] MULVANEY R L. Nitrogen-inorganic forms[J]. Methods of Soil Analysis: Part 3 Chemical Methods, 1996, 5: 1123-1184. DOI: 10.2136/sssabookser5.3.c38
[41] ZHENG Bangxiao, ZHU Yongguan, SARDANS J, et al. QMEC: A tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling[J]. Science China: Life Sciences, 2018, 61: 1451-1462. DOI: 10.1007/s11427-018-9364-7
[42] URMANN K, SCHROTH M H, ZEYER J. Recovery of in-situ methanotrophic activity following acetylene inhibition[J]. Biogeochemistry, 2008, 89: 347-355. DOI: 10.1007/s10533-008-9223-6
[43] BATES D. Lme4: Linear Mixed-Effects Models Using ‘Eigen' and S4. R package version 1.1-34[DB/OL].[2022-11-01]. https: //cran.r-project.org/web/packages/lme4/index.html
[44] LENTH R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1.8.2[DB/OL].[2022-11-01]. https: //CRAN.R-project.org/package=emmeans
[45] SAARI A, HEISKANEN J, MARTIKAINEN P J. Effect of the organic horizon on methane oxidation and uptake in soil of a boreal Scots pine forest[J]. FEMS Microbiology Ecology, 1998, 26(3): 245-255. DOI: 10.1111/j.1574-6941.1998.tb00509.x
[46] ISHIZUKA S, SAKATA T, ISHIZUKA K. Methane oxidation in Japanese forest soils[J]. Soil Biology and Biochemistry, 2000, 32(6): 769-777. DOI: 10.1016/S0038-0717(99)00200-X
[47] BORKEN W, BEESE F. Methane and nitrous oxide fluxes of soils in pure and mixed stands of European beech and Norway spruce[J]. European Journal of Soil Science, 2006, 57(5): 617-625. DOI: 10.1111/j.1365-2389.2005.00752.x
[48] KOSCHORRECK M, CONRAD R. Oxidation of atmospheric methane in soil: Measurements in the field, in soil cores and in soil samples[J]. Global Biogeochemical Cycles, 1993, 7(1): 109-121. DOI: 10.1029/92GB02814
[49] ANGEL R, CONRAD R. In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils[J]. Environmental Microbiology, 2009, 11(10): 2598-2610. DOI: 10.1111/j.1462-2920.2009.01984.x
[50] TERÁN E J, PRIANO M E, JULIARENA M P, et al. Pine afforestation improves the biological soil attributes linked to methane oxidation in a temperate zone of Argentina[J]. Cerne, 2022, 28: e-102967. DOI: 10.1590/01047760202228012967
[51] CAI Zucong, YAN Xiaoyuan. Kinetic model for methane oxidation by paddy soil as affected by temperature, moisture and N addition[J]. Soil Biology and Biochemistry, 1999, 31(5): 715-725. DOI: 10.1016/S0038-0717(98)00170-9
[52] WANG Zhiping, INESON P. Methane oxidation in a temperate coniferous forest soil: Effects of inorganic N[J]. Soil Biology and Biochemistry, 2003, 35(3): 427-433. DOI: 10.1016/j.soilbio.2004.06.002
[53] MAURER D, KOLB S, HAUMAIER L, et al. Inhibition of atmospheric methane oxidation by monoterpenes in Norway spruce and European beech soils[J]. Soil Biology and Biochemistry, 2008, 40(12): 3014-3020. DOI: 10.1016/j.soilbio.2008.08.023
[54] SCHNELL S, KING G M. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils[J]. Applied and Environmental Microbiology, 1994, 60(10): 3514-3521.
[55] STEINKAMP R, BUTTERBACH-BAHL K, PAPEN H. Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany[J]. Soil Biology and Biochemistry, 2001, 33(2): 145-153. DOI: 10.1128/AEM.60.10.3514-3521.1994
[56] SABREKOV A F, DANILOVA O V, TERENTIEVA I E, et al. Atmospheric methane consumption and methanotroph communities in west Siberian Boreal upland forest ecosystems[J]. Forests, 2021, 12(12): 1738. DOI: 10.3390/f12121738
[57] 张金凤, 杨智杰, 谢锦升, 等. 两种亚热带森林土壤甲烷氧化活性的垂直分布特征[J]. 亚热带资源与环境学报, 2015, 10(4): 1-7. [ZHANG Jinfeng, YANG Zhijie, XIE Jinsheng, et al. Vertical distribution of methane oxidation activity in two sub-tropic forest soils [J]. Journal of Subtropical Resources and Environment, 2015, 10(4): 1-7]DOI: 10.3969/j.issn.1673-7105.2015.04.001
[58] LI Quan, PENG Changhui, ZHANG Junbo, et al. Nitrogen addition decreases methane uptake caused by methanotroph and methanogen imbalances in a Moso bamboo forest[J]. Scientific Reports, 2021, 11(1): 1-14. DOI: 10.1038/s41598-021-84422-3
[59] 孙万龙, 孙志高, 孙文广, 等. 黄河口潮滩湿地土壤 CH4氧化潜力及其对有机物输入的响应[J]. 草业学报, 2014, 23(1): 104-112. [SUN Wanlong, SUN Zhigao, SUN Wenguang, et al. The methane oxidation potential of soils in tidal marshes of the Yellow River Estuary and its response to import of organic matter [J]. Acta Prataculturae Sinica, 2014, 23(1): 104-112]DOI: 10.11686/cyxb20140113
[60] 杨铭德, 焦燕, 李新, 等. 外源盐对不同盐碱程度土壤 CH4吸收潜力的影响[J]. 环境科学学报, 2017, 37(2): 737-746. [YANG Mingde, JIAO Yan, LI Xin, et al.Influence of exogenous salt on CH4 absorption potential indifferent saline-alkaline soils [J]. Acta Scientiae Circumstantiae, 2017, 37(2): 737-746]DOI: 10.13671/j.hjkxxb.2016.0162
[61] DEGELMANN D M, BORKEN W, DRAKE H L, et al. Different atmospheric methane-oxidizing communities in European beech and Norway spruce soils[J]. Applied and Environmental Microbiology, 2010, 76(10): 3228-3235. DOI: 10.1128/AEM.02730-09
[62] HENCKEL T, ROSLEV P, CONRAD R. Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil[J]. Environmental Microbiology, 2000, 2(6): 666-679. DOI: 10.1046/j.1462-2920.2000.00149.x
[63] LIU Junhua, XU Yunjian, ZHU Yingmo, et al. Enhanced soil methane oxidation in both organic layer and topsoil during the succession of subtropical forests[J]. Process Safety and Environmental Protection, 2023, 170: 865-876. DOI: 10.1016/j.psep.2022.12.064
[64] WAGNER D, LIPSKI A, EMBACHER A, et al. Methane fluxes in permafrost habitats of the Lena Delta: Effects of microbial community structure and organic matter quality[J]. Environmental Microbiology, 2005, 7(10): 1582-1592. DOI: 10.1111/J.1462-2920.2005.00849.x
[65] 齐润杰, 陈金霞, 但建国. 外源氮对琼北不同类型土壤甲烷氧化能力的影响[J]. 热带作物学报, 2016, 37(8): 1534-1539. [QI Runjie, CHEN Jinxia, DAN Jianguo.Effects of exogenous nitrogen on methane oxidation in upland soils of different types in northern Hainan Island [J].Chinese Journal of Tropical Crops, 2016, 37(8): 1534-1539] DOI: 10.3969/j.issn.1000-2561.2016.08.015
[66] MISHRA V K, SHUKLA R, SHUKLA P N. Inhibition of soil methane oxidation by fertilizer application: An intriguing but persistent paradigm[J]. Environmental Pollution and Protection, 2018, 3(2): 57-69. DOI: 10.22606/epp.2018.32001
[67] CHANG Ruiying, LIU Xinyu, WANG Tao, et al. Stimulated or inhibited response of methane flux to nitrogen addition depends on nitrogen levels[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(11): e2021JG006600. DOI: 10.1029/2021JG006600

相似文献/References:

[1]肖 蒙,何 欢,王营哲,等.滇中高原主要森林土壤发生特性及系统分类[J].山地学报,2019,(03):359.[doi:10.16089/j.cnki.1008-2786.000429]
 XIAO Meng,HE Huan,WANG Yingzhe,et al.Genetic Properties and Taxonomy of Forest Soil in Central Yunnan Plateau[J].Mountain Research,2019,(3):359.[doi:10.16089/j.cnki.1008-2786.000429]
[2]王 霞,杜岩功*,郭小伟.Meta分析模拟氮沉降对我国北方草地氧化亚氮排放速率的影响[J].山地学报,2021,(3):338.[doi:10.16089/j.cnki.1008-2786.000600]
 WANG Xia,DU Yangong*,GUO Xiaowei.Effect of Nitrogen Deposition on Grasslands Nitrous Oxide Emission Rates by Meta-Analysis Method[J].Mountain Research,2021,(3):338.[doi:10.16089/j.cnki.1008-2786.000600]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-05-10; 改回日期(Accepted date):2023-06-23
基金项目(Foundation item): 四川省科技计划(2023NSFSC0190); 国家自然科学基金(41977398)[Sichuan Science and Technology Program(2023NSFSC0190); National Natural Science Foundation of China(41977398)]
更新日期/Last Update: 2023-05-30