[1]史丰鸣a,杨 睿a,石松林a,等.川西南高山松径向生长对气候响应的时空分异特征[J].山地学报,2023,(4):478-492.[doi:10.16089/j.cnki.1008-2786.000764 ]
 SHI Fengminga,YANG Ruia,SHI Songlina,et al.Spatio-Temporal Variability of Radial Growth of Pinus densata in Responses to Climate Change in Southwestern Sichuan, China[J].Mountain Research,2023,(4):478-492.[doi:10.16089/j.cnki.1008-2786.000764 ]
点击复制

川西南高山松径向生长对气候响应的时空分异特征
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第4期
页码:
478-492
栏目:
山地环境
出版日期:
2023-07-25

文章信息/Info

Title:
Spatio-Temporal Variability of Radial Growth of Pinus densata in Responses to Climate Change in Southwestern Sichuan, China
文章编号:
1008-2786-(2023)4-478-15
作者:
史丰鸣a杨 睿a石松林ab*金亚宁a管增艳a
(成都理工大学a. 旅游与城乡规划学院; b.四川省社会科学重点研究基地(扩展)国家公园研究中心,成都 610059)
Author(s):
SHI FengmingaYANG RuiaSHI Songlinab*JIN YaningaGUAN Zengyana
(a. College of Tourism and Urban-Rural Planning; b.Research Center of National Park, Sichuan Key Research Base for Social Sciences, Chengdu University of Technology, Chengdu 610059, China)
关键词:
径向生长 树木年轮 气候变化 高山松 四川木里县
Keywords:
radial growth tree ring climate change Pinus densata Muli countySichuan
分类号:
K903
DOI:
10.16089/j.cnki.1008-2786.000764
文献标志码:
A
摘要:
气候变化从不同时空尺度上影响中国川西南山地亚高山森林生长。高山松( Pinus densata )作为高山地区的特有树种,是川西南山地亚高山针叶林的主要优势种或建群种。然而,目前有关高山松径向生长对气候变化响应的时空分异的研究仍有限,不利于全面了解川西南地区森林对气候变化的响应关系。为了探究不同生境下高山松生长对气候因子响应的特点及差异,本文以四川省木里县3个不同地点(鸭咀自然保护区、博窝乡坑古村、关机村)高山松为研究对象,采用树木年轮学方法,构建高山松树木年轮宽度指数标准年表和胸高断面积增量序列,运用相关分析和滑动相关分析方法研究不同地点高山松径向生长与各气候因子之间的关系。结果表明:(1)不同区域高山松径向生长对气候变化的响应方式不一致; 鸭咀自然保护区高山松径向生长主要受温度和生长季相对湿度限制,博窝乡关机村的高山松径向生长主要受7—8月的平均最低温度制约,而博窝乡坑古村的高山松径向生长主要受5—6月平均温度和相对湿度的影响。(2)不同区域高山松径向生长对气候响应的时间稳定性存在差异; 鸭咀自然保护区高山松生长与温度正相关关系逐渐增加,关机村高山松径向生长与温度的负相关关系和干旱指数的正相关关系不断加强,而坑古村的高山松径向生长对温度响应的敏感性呈下降趋势。(3)1990年升温突变后,生长季温度升高对高山松径向生长影响具有明显的区域差异,促进鸭咀保护区树木生长,抑制关机村树木生长,而坑古村树木生长受温度影响较弱。未来气候变暖背景下,干旱生境下高山松生长更容易受到气候变暖的影响而导致生长衰退,湿润环境下高山松会表现出生长加速,从而潜在改变区域森林动态。本研究可为未来气候变化背景下高山松生长动态预测及区域森林的适应性管理提供科学依据。
Abstract:
The growth of subalpine coniferous forests in mountainous areas of southwestern Sichuan of China is subject to global climate change on different spatial and temporal scales. As an endemic tree species in the alpine region, Pinus densata is a dominant or edificator of subalpine coniferous forests in the mountains of southwestern Sichuan. Unfortunately, there was a lack of in-depth knowledge of spatiotemporal differentiation of radial growth of Pinus densata in response to climate change,which is not conducive to a comprehensive understanding of the response mechanism of subalpine forests to climate change in southwestern Sichuan. In this study, it aimed alpine pines at three distinct habitat sites in Mulicounty, Sichuan province to explore the responses of tree radial growths of Pinusdensata to climatic factors. Three habitats for case study were selected separately at Yazui Nature Reserve, Kenggu village and Guanji village in Bowo Township, where it went through gradual changes from humid to relatively arid. Tree-ring width, tree-ring width index, and basal area increment of Pinusdensata were measured and calculated in terms of dendroecology method. Correlation and moving correlation analysis were used to study the relationship between climatic factors and radial growth of Pinusdensata at different locations. It had following findings.(1)The radial growth of Pinus densata in response to climate changes exhibited remarkable differentiation at distinct habitat sites. At the Yazui Natural Reserve, the radial growth of Pinus densata was significantly related to the temperature and relative humidity of the previous and current growing season. At the Guanji site, tree growth was primarily limited by average minimum temperature from July to August. At the Kenggu site, the radial growth of Pinus densata was predominantly constrained by the average temperature and relative humidity between May and June of the current year.(2)Temporal stability of the relationship between radial growth of Pinus densata and climatic factors varied among different study sites. The positive correlation between the radial growth of Pinus densata and temperature showed an increasing trend at the Yazui Natural Reserve. At the Guanji site, the correlation between radial growth and temperature was negative, whereas the correlation with the Palmer Drought Severity Index became positive. In contrast, the sensitivity of the radial growth in response to temperature decreased at the Kenggu site.(3)With sharp rise in temperature since 1990, there were intensive variations in the effects of increasing temperature in growing season on radial growth of Pinus densata at different study sites. Temperature rise promoted the growth of trees at the Yazui Natural Reserve, but inhibited them at the Guanji site; however, the growth of Pinus densata at the Kenggu site was narrowly influenced by temperature rise. The radial growth of Pinus densata in arid habitat was possible to decline affected by climate warming and Pinus densata in humid environment will exhibit accelerated growth, which would potentially change the forest dynamics under climate change.This study provides a scientific basis for the prediction of the growth dynamics of Pinus densata and the adaptive management of regional forests under the background of future climate change.

参考文献/References:

[1] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests [J]. Forest Ecology and Management, 2010, 259(4): 660-684. DOI:10.1016/j.foreco.2009.09.001
[2] PONOCNÁ T, CHUMAN T, RYDVAL M, et al. Deviations of treeline Norway spruce radial growth from summer temperatures in East-Central Europe [J]. Agricultural and Forest Meteorology, 2018, 253-254: 62-70. DOI:10.1016/j.agrformet.2018.02.001
[3] SEIDL R, THOM D, KAUTZ M, et al. Forest disturbances under climate change [J]. Nature Climate Change, 2017, 7(6): 395-402. DOI:10.1038/nclimate3303
[4] KEYIMU M, LI Zongshan, LIU Guohua, et al. Tree-ring based minimum temperature reconstruction on the southeastern Tibetan Plateau [J]. Quaternary Science Reviews, 2021, 251: 106712. DOI:10.1016/j.quascirev.2020.106712
[5] SILVA L C R, SUN G, ZHU-BARKER X, et al. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change [J]. Science Advances, 2016, 2(8): e1501302. DOI:10.1126/sciadv.1501302
[6] SHEN Jiayan, LI Zongshan, GAO Chengjie, et al. Radial growth response of Pinus yunnanensis to rising temperature and drought stress on the Yunnan Plateau, southwestern China [J]. Forest Ecology and Management, 2020, 474: 118357. DOI:10.1016/j.foreco.2020.118357
[7] SHI Songlin, LIU Guohua, LI Zongshan, et al. Elevation-dependent growth trends of forests as affected by climate warming in the southeastern Tibetan Plateau [J]. Forest Ecology and Management, 2021, 498: 119551. DOI:10.1016/j.foreco.2021.119551
[8] GUO Mingming, ZHANG Yuandong, LIU Shirong, et al. Divergent growth between spruce and fir at alpine treelines on the east edge of the Tibetan Plateau in response to recent climate warming [J]. Agricultural and Forest Meteorology, 2019, 276-277: 107631. DOI:10.1016/j.agrformet.2019.107631
[9] WANG Wenzhi, JIA Min, WANG Genxu, et al. Rapid warming forces contrasting growth trends of subalpine fir(Abies fabri)at higher- and lower-elevations in the eastern Tibetan Plateau [J]. Forest Ecology and Management, 2017, 402: 135-144. DOI:10.1016/j.foreco.2017.07.043
[10] 刘庆, 吴彦, 何海. 中国西南亚高山针叶林的生态学问题[J]. 世界科技研究与发展, 2001, 23(2): 63-69. [LIU Qing, WU Yan, HE Hai, et al. Ecological problems of subalpine coniferous forest in the southwest of China [J]. WORLD SCI-TECH Research and Development, 2001, 23(2): 63-69] DOI:10.16507/j.issn.1006-6055.2001.02.024
[11] ZHANG Yuandong, GUO Mingming, WANG Xiaochun, et al. Divergent tree growth response to recent climate warming of Abies faxoniana at alpine treelines in east edge of Tibetan Plateau [J]. Ecological Research, 2017, 33(2): 303-311. DOI:10.1007/s11284-017-1538-0
[12] 李宗善, 刘国华, 傅伯杰, 等. 川西卧龙国家级自然保护区树木生长对气候响应的时间稳定性评估[J]. 植物生态学报, 2010, 34(9): 1045-1057. [LI Zongshan, LIU Guohua, FU Bojie, et al. Evaluation of temporal stability in tree growth-climate response in Wolong National Natural Reserve, western Sichuan, China [J]. Chinese Journal of Plant Ecology, 2010, 34(9): 1045-1057] DOI:10.3773/j.issn.1005-264x.2010.09.005
[13] GUO Mingming, ZHANG Yuandong, WANG Xiaochun, et al. The responses of dominant tree species to climate warming at the treeline on the eastern edge of the Tibetan Plateau [J]. Forest Ecology and Management, 2018, 425: 21-26. DOI:10.1016/j.foreco.2018.05.021
[14] 徐宁, 王晓春, 张远东, 等. 川西米亚罗林区不同海拔岷江冷杉生长对气候变化的响应[J]. 生态学报, 2013, 33(12): 3742-3751. [XU Ning, WANG Xiaochun, ZHANG Yuandong, et al. Climate-growth relationships of Abies faxoniana from different elevations at Miyaluo,western Sichuan,China [J]. Acta Ecologica Sinica, 2013, 33(12): 3742-3751] DOI:10.5846/stxb201211131594
[15] 郭明明, 张远东, 王晓春, 等. 升温突变对川西马尔康树木生长的影响[J]. 生态学报, 2015, 35(22): 7464-7474. [GUO Mingming, ZHANG Yuandong, WANG Xiaochun, et al. Effects of abrupt warming on main conifer tree rings in Markang,Sichuan,China [J]. Acta Ecologica Sinica, 2015, 35(22): 7464-7474] DOI:10.5846/stxb201404140715
[16] 杜燕, 包维楷. 高山松林生态系统研究进展[J]. 四川林业科技, 2022, 43(5): 1-10. [DU Yan, BAO Weikai, et al. Research progress on Pinus densata forest [J]. Journal of Sichuan Forestry Science and Technology, 2022, 43(5): 1-10] DOI:10.12172/202208220004
[17] 吴普, 王丽丽, 邵雪梅. 采用高山松最大密度重建川西高原近百年夏季气温[J]. 地理学报, 2005, 60(6): 998-1006. [WU Pu, WANG Lili, SHAO Xuemei, et al. Reconstruction of summer temperature from maximum latewood density of Pinus densata in west Sichuan [J]. Acta Geographica Sinica, 2005, 60(6): 998-1006] DOI:10.11821/xb200506013
[18] 张贇, 尹定财, 孙梅, 等. 滇西北石卡雪山2个针叶树种森林上限径向生长对温度和降水的响应[J]. 生态学报, 2018, 38(7): 2442-2449. [ZHANG Yun, YIN Dingcai, SUN Mei, et al. Radial growth response of two conifers to temperature and precipitation at upper forest limits in Shika Snow Mountain,northwestern Yunnan Plateau [J]. Acta Ecologica Sinica, 2018, 38(7): 2442-2449] DOI:10.5846/stxb201703260521
[19] 王荷, 周军, 覃鑫浩, 等. 哈巴雪山高山松径向生长对气候变化的响应[J]. 林业资源管理, 2019(2): 67-72. [WANG He, ZHOU Jun, QIN Xinhao, et al. Radial growth responses of Pinus densata to climate change in Haba Snow Mountain,southwest China [J]. Forest Resources Management, 2019(2): 67-72] DOI:10.13466/j.cnki.lyzygl.2019.02.010
[20] BUNN A G. A dendrochronology program library in R(dplR)[J]. Dendrochronologia, 2008, 26(2): 115-124. DOI:10.1016/j.dendro.2008.01.002
[21] BIONDI F, QEADAN F. A theory-driven approach to tree-ring standardization: Defining the biological trend from expected basal area increment [J]. Tree-Ring Research, 2008, 64(2): 81-96. DOI:10.3959/2008-6.1
[22] PETERS R L, GROENENDIJK P, VLAM M, et al. Detecting long-term growth trends using tree rings: A critical evaluation of methods [J]. Global Change Biology, 2015, 21(5): 2040-2054. DOI:10.1111/gcb.12826
[23] JUMP A S, HUNT J M, PEÑUELAS J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica [J]. Global Change Biology, 2006, 12(11): 2163-2174. DOI:10.1111/j.1365-2486.2006.01250.x
[24] FAN Zexin, BRÄUNING A, CAO Kunfang, et al. Growth-climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China [J]. Forest Ecology and Management, 2009, 258(3): 306-313. DOI:10.1016/j.foreco.2009.04.017
[25] ZANG C, BIONDI F. Treeclim: An R package for the numerical calibration of proxy-climate relationships [J]. Ecography, 2015, 38(4): 431-436. DOI:10.1111/ecog.01335
[26] 杨晨, 董晓华, 董立俊, 等. 雅砻江流域1961—2018年极端气候时空演变研究[J]. 中国农村水利水电, 2023(2): 46-56+65. [YANG Chen, DONG Xiaohua, DONG Lijun, et al. Study on the temporal and spatial evolution of extreme climate in the Yalong River basin from 1961 to 2018 [J]. China Rural Water and Hydropower, 2023(2): 46-56+65] DOI:10.12396/znsd.220706
[27] 王婷, 于丹, 李江风, 等. 树木年轮宽度与气候变化关系研究进展[J]. 植物生态学报, 2003, 27(1): 23-33. [WANG Ting, YU Dan, LI Jiangfeng, et al. Advances in research on the relationship between climatic change and tree-ring width [J]. Chinese Journal of Plant Ecology, 2003, 27(1): 23-33] DOI:10.17521/cjpe.2003.0004
[28] 陈力, 吴绍洪, 戴尔阜. 长白山红松和落叶松树轮宽度年表特征[J]. 地理研究, 2011, 30(6): 1147-1155. [CHEN Li, WU Shaohong, DAI Erfu, et al. Analysis of the tree-ring width chronologies of Pinus koraiensis and Laix olgensis on Changbai Mountains, northeast China [J]. Geographical Research, 2011, 30(6): 1147-1155] DOI:10.11821/yj2011060018
[29] 张艳静, 于瑞德, 郑宏伟, 等. 天山东西部雪岭云杉径向生长对气候变暖的响应差异[J]. 生态学杂志, 2017, 36(8): 2149-2159. [ZHANG Yanjing, YU Ruide, ZHENG Hongwei, et al. Difference in response of radial growth of Picea schrenkiana to climate warming in the eastern and western Tianshan Mountains [J]. Chinese Journal of Ecology, 2017, 36(8): 2149-2159] DOI:10.13292/j.1000-4890.201708.021
[30] 杨镒如, 张茗珊, 张凌楠, 等. 秦岭中西部油松径向生长对气候因子的响应差异研究[J]. 生态学报, 2022, 42(4): 1474-1486. [YANG Yiru, ZHANG Mingshan, ZHANG Lingnan, et al. Different responses of radial growth of Pinus tabuliformis to climate in the middle and western Qinling Mountains [J]. Acta Ecologica Sinica, 2022, 42(4): 1474-1486] DOI:10.5846/stxb202102060392
[31] 秦进, 白红英, 赵培, 等. 秦岭不同龄组巴山冷杉径向生长对气候因子的响应差异[J]. 生态学报, 2022, 42(17): 7167-7176. [QIN Jin, BAI Hongying, ZHAO Pei, et al. Age-dependent response of Abies fargesii tree radial growth to climatic factors in the Qinling Mountains [J]. Acta Ecologica Sinica, 2022, 42(17): 7167-7176] DOI:10.5846/stxb202110182929
[32] 管增艳, 金亚宁, 许倩, 等. 川西云杉人工林径向生长对气候变化的响应[J]. 应用与环境生物学报, 2021, 27(3): 560-567. [GUAN Zengyan, JIN Yaning, XU Qian, et al. Growth response of an artificial plantation of Picea likiangensis var. rubescens to climate change [J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 560-567] DOI:10.19675/j.cnki.1006-687x.2021.02040
[33] LIANG Eyyuan, SHAO Xuemei, ECKSTEIN D, et al. Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau [J]. Forest Ecology and Management, 2006, 236(2-3): 268-277. DOI:10.1016/j.foreco.2006.09.016
[34] 苟晓霞, 张同文, 袁玉江, 等. 阿尔泰山主要针叶树种树木径向生长及其对气候变化的响应[J]. 应用生态学报, 2021, 32(10): 3594-3608. [GOU Xiaoxia, ZHANG Tongwen, YUAN Yujiang, et al. Radial growth of dominant coniferous species and their responses to climate changes in the Altay Mountains, China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3594-3608] DOI:10.13287/j.1001-9332.202110.041
[35] GAO Shan, LIANG Eryuan, LIU Ruishun, et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas [J]. Nature Ecology and Evolution, 2022, 6(4): 397-404. DOI:10.1038/s41559-022-01668-4
[36] 贾龙玉, 管增艳, 常瑞英, 等. 贡嘎山树线上方杜鹃灌木径向生长对气候变化的响应特征[J]. 山地学报, 2021, 39(5): 646-657. [JIA Longyu, GUAN Zengyan, CHANG Ruiying, et al. Response of radical growth of Rhododendron faberi subsp. Prattii to climate change above treeline in the Gongga Mountain, China [J]. Mountain Research, 2021, 39(5): 646-657] DOI:10.16089/j.cnki.1008-2786.000627
[37] DU Qiqi, ROSSI S, LU Xiaoming, et al. Negative growth responses to temperature of sympatric species converge under warming conditions on the southeastern Tibetan Plateau [J]. Trees, 2020, 34(2): 395-404. DOI:10.1007/s00468-019-01924-4
[38] 阎弘, 孙滢洁, 刘滨辉. 竞争对红松树木的干旱适应性及生长衰退影响[J]. 北京林业大学学报, 2022, 44(6): 1-9. [YAN Hong, SUN Yingjie, LIU Binhui, et al. Effects of competition on drought adaptability and growth decline of Pinus koraiensis trees [J]. Journal of Beijing Forestry University, 2022, 44(6): 1-9] DOI:10.12171/j.1000-1522.20210198
[39] 庞鑫, 张萌, 石松林, 等. 近65年来四川红杉径向生长对气候变暖的响应[J]. 应用与环境生物学报, 2021, 27(3): 568-576. [PANG Xin, ZHANG Meng, SHI Songlin, et al. Radial growth response of Larix mastersiana to climate warming in the last 60 years [J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 568-576] DOI:10.19675/j.cnki.1006-687x.2021.02013
[40] 丁文荣. 横断山区干旱河谷气候变化趋势研究[J]. 生态与农村环境学报, 2013, 29(6): 681-687. [DING Wenrong. Trend of the climate changes in dry valleys of Hengduan Mountains, China [J]. Journal of Ecology and Rural Environment, 2013, 29(6): 681-687] DOI:10.3969/j.issn.1673-4831.2013.06.001
[41] 王亚军, 勾晓华, 刘普幸, 等. 甘肃榆中200年来春季气温的变化[J]. 中国沙漠, 2006, 26(2): 283-285. [WANG Yajun, GOU Xiaohua, LIU Puxing, et al. Change of spring temperature in Yuzhong of Gansu province during recent 200 years [J]. Journal of Desert Research, 2006, 26(2): 283-285] DOI:10.3321/j.issn:1000-694X.2006.02.023
[42] MACIAS M, ANDREU L, BOSCH O, et al. Increasing aridity is enhancing silver fir(abies alba mill.)water stress in its south-western distribution limit [J]. Climatic Change, 2006, 79(3-4): 289-313. DOI:10.1007/s10584-006-9071-0
[43] SONG Wenqi, MU Changcheng, ZHANG Yuandong, et al. Moisture-driven changes in the sensitivity of the radial growth of Picea crassifolia to temperature, northeastern Tibetan Plateau [J]. Dendrochronologia, 2020, 64: 125761. DOI:10.1016/j.dendro.2020.125761

相似文献/References:

[1]陈 峰,袁玉江,喻树龙.闽中北柳杉树轮指示的气候信号与季风区不同地域干湿变化关系[J].山地学报,2015,(06):690.[doi:10.16089/j.cnki.1008-2786.000083]
 CHEN Feng,YUAN Yujiang,YU Shulong.Drought Signals in the Tree-ring Width Record of Cedar(Cryptomeria fortunei)Trees from North Central Fujian: Linkages to the Monsoonal Regions[J].Mountain Research,2015,(4):690.[doi:10.16089/j.cnki.1008-2786.000083]

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-12- 07; 改回日期(Accepted date):2023- 08-17
基金项目(Foundation item): 第二次青藏高原综合科学考察研究(2019QZKK0402)。[Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0402)]
作者简介(Biography): 史丰鸣(1999-),男,河南漯河人,硕士研究生,主要研究方向:全球变化。[SHI Fengming(1999- ), male, born in Luohe, Henan province, M.Sc. candidate, research on global change]E-mail: shifengming@stu.cdut.edu.cn
*通讯作者(Corresponding author): 石松林(1986-),男,博士,副教授,主要研究方向:全球变化。[SHI Songlin(1986-), male,Ph.D., associate professor,research on global change]E-mail: shisonglin17@ cdut.edu.cn
更新日期/Last Update: 2023-07-30