参考文献/References:
[1] BERGHUIJS W R, WOODS R A, HRACHOWITZ M. A precipitation shift from snow towards rain leads to a decrease in streamflow [J]. Nature Climate Change, 2018, 4(7): 583-586. DOI: 10.1038/NCLIMATE2246
[2] FORNIS R L, VERMEULEN H R, NIEUWENHUIS J D. Kinetic energy-rainfall intensity relationship for Central Cebu, Philippines for soil erosion studies [J]. Journal of Hydrology, 2005, 300: 20-32. DOI: 10.1016/j.jhydrol.2004.04.027
[3] VAN DIJK A I J M, BRUIJNZEEL L A, ROSEWELL C J. Rainfall intensity-kinetic energy relationships: A critical literature appraisal [J]. Journal of Hydrology, 2002, 261(14): 1-23. DOI: 10.1016/S0022-1694(02)00020-3
[4] BROWN T M, POGORZELSKI W H, GIAMMANCO I M. Evaluating hail damage using property insurance claims data [J]. Weather, Climate and Society, 2015, 7(3): 197-210. DOI: 10.1175/WCAS-D-15-0011.1
[5] LOFTUS A M, COTTON W R, CARRIO G G. A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation [J]. Atmospheric Research, 2014, 149: 35-37. DOI: 10.1016/j.atmosres.2014.05.013
[6] MINEO C, RIDOLFI E, BERTINI C, et al. Kinetic energy and rainfall intensity relationships: A review [G]// AIP Conference Proceedings. Proceedings of International Conference of Numerical Analysis and Applied Mathematics. Rhodes: AIP Publishing, 2019: 210005-1-210005-4. DOI: 10.1063/1.5114216
[7] ANGULO-MARTÍNEZ M, BEGUERÍA S, KYSELY' J. Use of disdrometer data to evaluate the relationship of rainfall kinetic energy and intensity(KE-I)[J]. Science of the Total Environment, 2016, 568: 83-94. DOI: 10.1016/j.scitotenv.2016.05.223
[8] JAYAWARDENA A W, REZAUR R B. Drop size distribution and kinetic energy load of rainstorms in Hong Kong [J]. Hydrological Processes, 2000, 14(6): 1069-1082. DOI: 10.1002/(SICI)1099-1085(20000430)14:6<1069::AID-HYP997>3.0.CO; 2-Q
[9] SALLES C, POESEN J, SEMPERE-TORRES D. Kinetic energy of rain and its functional relationship with intensity [J]. Journal of Hydrology, 2002, 257: 256-270. DOI: 10.1016/S0022-1694(01)00555-8
[10] LIM Y S, KIM J K, KIM J W, et al. Analysis of the relationship between the kinetic energy and intensity of rainfall in Daejeon, Korea [J]. Quaternary International, 2015, 384: 107-117. DOI: 10.1016/j.quaint.2015.03.021
[11] USÓN A, RAMOS M C. An improved rainfall erosivity index obtained from experimental interrill soil losses in soils with a Mediterranean climate [J]. Catena, 2001, 43(4): 293-305. DOI: 10.1016/S0341-8162(00)00150-8
[12] PETAN S, RUSJAN S, VIDMAR A, et al. The rainfall kinetic energy-intensity relationship for rainfall erosivity estimation in the mediterranean part of Slovenia [J]. Journal of Hydrology, 2010, 391(3-4): 314-321. DOI: 10.1016/j.jhydrol.2010.07.031
[13] NEARING M A, YIN S Q, BORRELLI P, et al. Rainfall erosivity: An historical review [J]. Catena, 2017, 157: 357-362. DOI: 10.1016/j.catena.2017.06.004
[14] 陈洁, 刘玉洁, 潘韬, 等. 1961—2010年中国降水时空变化特征及对地表干湿状况影响[J]. 自然资源学报, 2019, 34(11): 2440-2453. [CHEN Jie, LIU Yujie, PAN Tao, et al. Spatiotemporal variation of precipitation in China and its impact on surface dry-wet conditions during 1961-2010 [J]. Journal of Natural Resources, 2019, 34(11): 2440-2453] DOI: 10.31497/zrzyxb.20191115
[15] 李林, 孙赫敏, 仰美霖, 等. 基于速度和数量阈值的雨滴谱质量控制方法[J]. 气象, 2022, 48(7): 891-898. [LI Lin, SUN Hemin, YANG Meilin, et al. Disdrometer's data quality control method based on speed and quantity threshold [J]. Meteorological Monthly, 2022, 48(7): 891-898] DOI: 10.7519/j.issn.1000-0526.2022.041201
[16] GOU Yabin, CHEN Haonan, ZHU Hong, et al. Microphysical processes of super typhoon Lekima(2019)and their impacts on polarimetric radar remote sensing of precipitation [J]. Atmospheric Chemistry and Physics, 2023, 23(4): 2439-2463. DOI: 10.5194/acp-23-2439-2023
[17] LÖFFLER-MANG M, JOSS J. An optical disdrometer for measuring size and velocity of hydrometeors [J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(2): 130-139. DOI: 10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO; 2
[18] ATLAS D, SRIVASTAVA R C, SEKHON R S. Doppler radar characteristics of precipitation at vertical incidence [J]. Reviews of Geophysics and Space Physics, 1973, 11(1): 1-35. DOI: 10.1029/RG011i001p00001
[19] FRIEDRICH K, KALINA E A, MASTERS F J, et al. Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2 [J]. Monthly Weather Review, 2013, 141(4): 1182-1203. DOI: 10.1175/MWR-D-12-00116.1
[20] 陶然亭. 基于二维视频雨滴谱仪和双偏振雷达研究中国东部地区降雪微物理特征与降雪估计[D]. 南京: 南京大学, 2020: 1-73. [TAO Ranting. Snow microphysical characteristics and snow fall estimation in East China based on a 2D video disdrometer and dual polarization radar [D]. Nanjing: Nanjing University, 2020: 1-73] DOI: 10.27235/d.cnki.gnjiu.2020.002509
[21] GRIESER J, HILL M. How to express hail intensity—modeling the hailstone size distribution [J]. Journal of Applied Meteorology and Climatology, 2019, 58(10): 2329-2345. DOI: 10.1175/JAMC-D-18-0334.1
[22] DAI Qiang, ZHU Jingxuan, ZHANG Shuliang, et al. Estimation of rainfall erosivity based on WRF-derived raindrop size distributions [J]. Hydrology and Earth System Sciences, 2020, 24(11): 5407-5422. DOI: 10.5194/hess-24-5407-2020
[23] KIM J, HAN H, KIM B, et al. Use of a high-resolution-satellite-based precipitation product in mapping continental-scale rainfall erosivity: A case study of the United States [J]. Catena, 2020, 193: 104602. DOI: 10.1016/j.catena.2020.104602
[24] MONTERO-MARTÍNEZ G, GARCÍA-GARCÍA F, ARENAL-CASAS S. The change of rainfall kinetic energy content with altitude [J]. Journal of Hydrology, 2020, 584: 124685. DOI: 10.1016/j.jhydrol.2020.124685
[25] CHEN Hao, ZHANG Xiaoping, ABLA M, et al. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China [J]. Catena, 2018, 170: 141-149. DOI: 10.1016/j.catena.2018.06.006
[26] ZHU Jingxuan, ZHANG Shuliang, YANG Qiqi, et al. Comparison of rainfall microphysics characteristics derived by numerical weather prediction modelling and dual-frequency precipitation radar [J]. Meteorological Applications, 2021, 28(3): e2000. DOI: 10.1002/met.2000
[27] WILLMOTT C J, MATSUURA K. Advantages of the mean absolute error(MAE)over the root mean square error(RMSE)in assessing average model performance [J]. Climate Research, 2005, 30(1): 79-82. DOI: 10.3354/cr030079
[28] 于水燕, 毕力格, 苏立娟, 等. 内蒙古巴彦淖尔市冰雹云移动路径及其特征[J]. 干旱区研究, 2022, 39(4): 1047-1055. [YU Shuiyan, BI Lige, SU Lijuan, et al. Movement paths and characteristics of hail clouds in Bayannur, Inner Mongolia [J]. Arid Zone Research, 2022, 39(4): 1047-1055] DOI: 10.13866/j.azr.2022.04.06
[29] 韩经纬, 王海梅, 乌兰, 等. 内蒙古雷暴、冰雹灾害的评估分析与防御对策研究[J]. 干旱区资源与环境, 2009, 23(7): 31-38. [HAN Jingwei, WANG Haimei, WU Lan, et al. The analysis and assessment on thunderstorm and hail disasters and the countermeasures in Inner Mongolia [J]. Journal of Arid Land Resources and Environment, 2009, 23(7): 31-38] DOI: 10.13448/j.cnki.jalre.2009.07.008
[30] 冯晓莉, 马占良, 管琴, 等. 1980—2018年青海高原冰雹分布特征及其关键影响因素分析 [J]. 气象, 2021, 47(6): 717-726. [FENG Xiaoli, MA Zhanliang, GUAN Qin, et al. Spatio-temporal characteristics of hail and its influence factors in Qinghai Plateau during 1980-2018 [J]. Meteorological Monthly, 2021, 47(6): 717-726] DOI: 10.7519/j.issn.1000-0526.2021.06.007
[31] 黄艳, 裴江文. 新疆喀什地区冰雹气候特征及大气环境背景分析[J]. 干旱区研究, 2015, 32(3): 526-532. [HUANG Yan, PEI Jiangwen. Hail climate characteristics and atmospheric environment background in Kashi region, Xinjiang [J]. Arid Zone Research, 2015, 32(3): 526-532] DOI: 10.13866/j.azr.2015.03.17
[32] 王昀, 卢品睿, 王旭. 天山南侧喀什地区冰雹潜势预报及预警指标的研究[J]. 干旱区地理, 2018, 41(5): 937-944. [WANG Yun, LU Pinrui, WANG Xu. Nowcasting indicators of radar of hail cloud in southern Tianshan Mountains [J]. Arid Land Geography, 2018, 41(5): 937-944] DOI: 10.12118/j.issn.1000-6060.2018.05.05