[1]牛 赟,赵维俊*,许尔文,等.祁连山排露沟流域径流对气候及下垫面变化的响应[J].山地学报,2023,(6):799-810.[doi:10.16089/j.cnki.1008-2786.000788]
 NIU Yun,ZHAO Weijun*,XU Erwen,et al.Response of Runoff to the Changes in Climate and Underlying Surface at the Pailugou Basin of the Qilian Mountains, China[J].Mountain Research,2023,(6):799-810.[doi:10.16089/j.cnki.1008-2786.000788]
点击复制

祁连山排露沟流域径流对气候及下垫面变化的响应
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第6期
页码:
799-810
栏目:
山地环境
出版日期:
2023-11-25

文章信息/Info

Title:
Response of Runoff to the Changes in Climate and Underlying Surface at the Pailugou Basin of the Qilian Mountains, China
文章编号:
1008-2786-(2023)6-799-12
作者:
牛 赟1赵维俊2*许尔文2董继业3金 铭4任小凤2
(1.淮阴师范学院 地理科学与规划学院,江苏 淮安 223300; 2.甘肃省祁连山水源涵养林研究院 甘肃祁连山森林生态系统国家定位观测研究站, 甘肃 张掖 734000; 3.甘肃农业大学 林学院,兰州 730030; 4.河西学院 农业与生态工程学院, 甘肃 张掖 734000)
Author(s):
NIU Yun1 ZHAO Weijun2* XU Erwen2 DONG Jiye3 JIN Ming4 REN Xiaofeng2
(1. School of Geography and Planning, Huaiyin Normal University, Huaian 223300, Jiangsu, China; 2. Gansu Qilian Mountains Forest Eco-system of the State Research Station,Gansu Province Academy of Water Resources Conservation Forest of the Qilian Mountains, Zhangye 734000, Gansu, China; 3. College of Forestry, Gansu Agricultural University, Lanzhou 730030, China; 4. College of Agriculture and Ecological Engineering, Hexi University, Zhangye 734000, Gansu, China)
关键词:
径流变化 归因分析 气候变化 碳密度 祁连山排露沟流域
Keywords:
runoff change attribution analysis climate change carbon density Pailugou Basin of the Qilian Mountains
分类号:
P333.1
DOI:
10.16089/j.cnki.1008-2786.000788
文献标志码:
A
摘要:
在全球气候变暖和人类活动的共同影响下,中国西北干旱半干旱区水循环变化与水资源再分配正在改变区域生态环境。在长时间序列尺度上,仍缺乏对西北内陆河径流变化机制与特征时空格局的统一认识。本研究以祁连山排露沟流域为试验区,基于量水堰实测长序列径流数据,采用线性回归法、Mann-Kendall、滑动t、Pettitt和累积距平等检验方法,分析排露沟流域1994—2020年径流序列的变化趋势和突变年份; 以气象站监测和人工潜在蒸发观测数据为基础,采用Budyko假设水热耦合平衡模型对排露沟流域径流量变化趋势进行归因分析; 以固定样地2003—2021年每木检尺数据,采用材积源生物量法,对排露沟流域15个乔木固定样地的1017棵青海云杉的碳密度进行估算。结果表明:(1)1994—2020年排露沟流域径流量波动变化,丰枯交替,但整体呈现增加趋势,2006年径流发生突变,突变后的年平均径流量增加了9.53×104 m3,增加率为 34.88%。(2)在2007—2020年的突变期,排露沟流域径流对降水、潜在蒸发和流域下垫面参数的弹性系数分别为3.15、-0.70和-0.68,且各因子对径流的贡献率分别为87.92%、19.97%和-7.89%,表明径流量对降水量变化最为敏感,气候因子中潜在蒸发对径流的影响大于流域下垫面的变化。(3)2003—2021年排露沟流域青海云杉平均碳密度为63.09 Mg C·hm-2,平均每年增长速率为1.94%。在人类活动干扰较小的条件下,森林植被的碳储量和碳密度变化是引起流域下垫面参数波动的主要原因。研究结果可为流域管理部门制定自然资源保护与水资源合理分配及调用方案提供科学依据,为生态环境保护部门在权衡林水效益方面提供参考。
Abstract:
Under the joint influence of global warming and human activities, the change of water cycle and redistribution of water resources in arid and semi-arid areas of Northwest China are changing the regional ecological environment. On a long-term time series scale, there was a lack of unified interpretation of spatial-temporal patterns of runoff variations in inland rivers in northwest China.
In this study, it took the Pailugou Basin originated from the Qilian Mountains as case study. It interpreted the measured long-series runoff data collected at water weirs by using linear regression method, Mann-Kendall, sliding t, Pettitt and cumulative distance test methods, etc., and then the change trend and mutation year of the runoff series from 1994 to 2020 were analyzed. Based on data collected at meteorological stations and artificial potential evaporation observation, it used the Budyko hypothesis of hydrothermal coupling balance model to conduct attributional analysis of the trend of runoff variation in the basin. The carbon density of 1017 Picea crassifolia trees in 15 fixed tree plots in the Pailugou Basin was estimated by using volume source biomass method based on the data from 2003 to 2021.
It has following results.(1)From 1994 to 2019, runoff in the Pailugou Basin fluctuated, with alternating of ample flow and low water, but presenting an overall increasing trend. A sudden change in runoff occurred in 2006, and the average annual runoff after the event increased by 9.53×104 m2, or an increase rate of 34.88%.(2)In the mutation period of 2007 to 2020, the elasticity coefficients of runoff in the Pailugou Basin to precipitation, potential evaporation and underlying earth surface parameters were 3.15, -0.70 and -0.68, respectively, and the contribution rates of each factor to the runoff were 87.92%, 19.97%, and -7.89%, respectively, indicating that the amount of runoff was the most sensitive to the changes in precipitation, and the effect of potential evaporation among climate factors on runoff was greater than the changes in the underlying surface of the basin.(3)From 2003 to 2021, the average carbon density of Picea crassifoliatrees in 15 fixed tree plots in the Pailugou Basin was estimated by using volume source biomass method based on the data from 2003 to 2021.
It has following results.(1)From 1994 to 2019, runoff in the Pailugou Basin fluctuated, with alternating of ample flow and low water, but presenting an overall increasing trend. A sudden change in runoff occurred in 2006, and the average annual runoff after the event increased by 9.53×104 m2, or an increase rate of 34.88%.(2)In the mutation period of 2007 to 2020, the elasticity coefficients of runoff in the Pailugou Basin to precipitation, potential evaporation and underlying earth surface parameters were 3.15, -0.70 and -0.68, respectively, and the contribution rates of each factor to the runoff were 87.92%, 19.97%, and -7.89%, respectively, indicating that the amount of runoff was the most sensitive to the changes in precipitation, and the effect of potential evaporation among climate factors on runoff was greater than the changes in the underlying surface of the basin.(3)From 2003 to 2021, the average carbon density ofs 63.09 Mg C·hm-2, with an average growth rate of 1.94%. In the case of less interference from human disturbance, the changes in carbon stocks and carbon density of forest vegetation were the main reasons for the fluctuation of underlying surface parameters in the basin.
The research can provide scientific basis for hydro-resource management administration to formulate programs natural resource protection and rational utilization of water resources, and provide reference for ecological environmental protection departments to weigh benefits of forest and water.

参考文献/References:

[1] OKI T, KANAE S. Global hydrological cycles and world water resources [J]. Science, 2006, 313(5790): 1068-1072. DOI: 10.1126/science.1128845
[2] 宋晓猛, 张建云, 占车生, 等. 气候变化和人类活动对水文循环影响研究进展[J]. 水利学报, 2013, 44(7): 779-790. [SONG Xiaomeng, ZHANG Jianyun, ZHAN Chesheng, et al. Review for impacts of climate change and human activities on water cycle [J]. Journal of Hydraulic Engineering, 2013, 44(7): 779-790] DOI: 10.13243/j.cnki.slxb.2013.07.001
[3] 张强, 胡隐樵, 曹晓彦, 等. 论西北干旱气候的若干问题[J]. 中国沙漠, 2000, 20(4): 357-362. [ZHANG Qiang, HU Yinqiao, CAO Xiaoyan, et al. On some problems of arid climate system of northwest China [J]. Journal of Desert Research, 2000, 20(4): 357-362]
[4] 王玉洁, 秦大河. 气候变化及人类活动对西北干旱区水资源影响研究综述[J]. 气候变化研究进展, 2017, 13(5): 483-493. [WANG Yujie, QIN Dahe. Influence of climate change and human activity on water resources in arid region of northwest China: An overview [J]. Climate Change Research, 2017, 13(5): 483-493] DOI: 10.12006/j.issn.1673-1719.2017.004
[5] 吴景全, 吴铭婉, 臧传富. 西北诸河流域土地利用变化及土地生态安全评估[J]. 干旱区地理, 2021, 44(5): 1471-1482. [WU Jingquan, WU Mingwan, ZANG Chuanfu. Land use change and land ecological security assessment in the river basins of northwestern China [J]. Arid Land Geography, 2021, 44(5): 1471-1482] DOI: 10.12118/j.issn.1000-6060.2021.05.27
[6] 黄鑫, 程文仕, 李晓丹, 等. 干旱内陆河流域土地利用转型的生态环境效应变化特征及其驱动因素探测[J]. 水土保持研究, 2023, 30(2): 324-332. [HUANG Xin, CHENG Wenshi, LI Xiaodan, et al. Recognition on the changes and driving factors of eco-environmental effect of land use transformation in arid inland river basin [J]. Research of Soil and Water Conservation, 2023, 30(2): 324-332] DOI: 10.13869/j.cnki.rswc.2023.02.040
[7] 王晓杰, 刘海隆, 包安明. 气候变化对玛纳斯河的径流量影响预测模拟分析[J]. 冰川冻土, 2012, 34(5): 1220-1228. [WANG Xiaojie, LIU Hailong, BAO Anming. A simulation analysis of the impact of climate change on runoff in the Manas River [J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1220-1228]
[8] 肖森元, 苏军, 杨广, 等. 气候变化和人类活动对玛纳斯河流域径流及干旱的影响[J]. 人民珠江, 2022, 43(7): 21-28. [XIAO Senyuan, SU Jun, YANG Guang, et al. Impact of climate change and human activities on runoff and drought in Manas River Basin [J]. Pearl River, 2022, 43(7): 21-28] DOI: 10.3969/j.issn.1001-9235.2022.07.004
[9] 孙从建, 陈伟, 王诗语. 气候变化下的塔里木盆地西南部内陆河流域径流组分特征分析[J]. 2022, 39(1): 113-122. [SUN Congjian, CHEN Wei, WANG Shiyu. Stream component characteristics of the inland river basin of the Tarim Basin under regional climate change [J]. Arid Zone Research, 2022, 39(1): 113-122] DOI: 10.13866/j.azr.2022.01.12
[10] 吴凯, 李强坤, 殷会娟, 等. 黑河“97”分水方案下黑河流域径流演变新事实与调水成效分析[G]. 中国水利学会. 中国水利学会2020学术年会论文集第三分册.中国水利水电出版社, 中国北京2020: 89-95. [WU Kai, LI Qiangkun, YIN Huijuan, et al. New facts of runoff evolution and analysis of water transfer effectiveness in Heihe River Basin under the “97” water dividing scheme of Heihe River [G]. Chinese Hydraulic Engineering Society. The Third Volume of the Proceedings of the 2020 Academic Annual Meeting of the Chinese Hydraulic Engineering Society, China Water Power Press, Beijing China2020: 89-95] DOI: 10.26914/c.cnkihy.2020.069414
[11] 张妍, 郭萍, 张帆. 黑河中游农业水资源多目标优化配置[J]. 中国农业大学学报, 2019, 24(5): 185-192.[ZHANG Yan, GUO Ping, ZHANG Fan. Study on multi-objective optimization allocation of agricultural water resources in the middle reaches of Heihe River [J]. Journal of China Agricultural University, 2019, 24(5): 185-192] DOI: 10.11841/J.ISSN.1007-4333.2019.05.21
[12] 蒋小芳, 段翰晨, 廖杰, 等. 基于多模型的黑河中游甘临高地区土地利用情景模拟[J]. 农业机械学报, 2022, 53(9): 178-188. [JIANG Xiaofang, DUAN Hanchen, LIAO Jie, et al. Multi-model-based simulation of different landuse scenarios in Gan-Lin-Gao area in middle reaches of Heihe River [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 178-188] DOI: 10.6041/j.issn.1000-1298.2022.09.018
[13] 杜伟宏. 塔里木河干流水土资源变化与生态恢复研究[D]. 西安: 长安大学, 2020: 43-54. [DU Weihong.Study on changes of soil and water resources and ecological recovery in the main stream of Tarim River [D]. Xi'an: Chang'an University, 2020: 43-54]
[14] 耿文杰. 基于“97”分水方案和“三条红线”的黑河中游水资源配置研究[D]. 西安: 西北大学, 2021: 49-60.[GENG Wenjie. The allocation of water resources in the midstream of Heihe River for the “97 water diversion scheme” and the “Three Red Lines” [D]. Xi'an: Northwest University, 2021: 49-60]
[15] 张晓晓, 张钰, 徐浩杰, 等. 河西走廊三大内陆河流域出山径流变化特征及其影响因素分析[J]. 干旱区资源与环境, 2014, 28(4): 66-72. [ZHANG Xiaoxiao, ZHANG Yu, XU Haojie, et al. Mountainous runoff change in three inland river basin in Hexi Corridor and its influencing factors [J]. Journal of Arid Land Resources and Environment, 2014, 28(4): 66-72] DOI: 10.13448/j.cnki.jalre.2014.04.034
[16] 张彧瑞. 河西内陆河流域径流变化特征及对气候变化和人类活动的响应[D]. 兰州: 兰州大学, 2013: 9-10.[ZHANG Yurui. The characteristic of runoff and its response on climate change and human activities in inland basins, Hexi Region [D]. Lanzhou: Lanzhou University, 2013: 9-10]
[17] 李秋菊, 李占玲, 王杰. 黑河流域上游径流变化及其归因分析[J]. 南水北调与水利科技, 2019, 17(3): 31-39. [LI Qiuju, LI Zhanling, WANG Jie, et al. Variation and attribution of runoff over the upper reaches of Heihe River Basin [J]. South-to-North Water Transfers and Water Science and Technology, 2019, 17(3): 31-39] DOI: 10.13476/j.cnki.nsbdqk.2019.0057
[18] 李芳, 邹松兵, 陆志翔, 等. 气候变暖背景下黄河源区白河和黑河流域径流变化归因分析[J]. 兰州大学学报(自然科学版), 2020, 56(1): 56-64. [LI Fang, ZOU Songbing, LU Zhixiang, et al. Analysis of streamflow variations in the Bai and Hei River Basins in the source region of the Yellow River under the background of climate warming [J]. Journal of Lanzhou University(Natural Sciences), 2020, 56(1): 56-64] DOI: 10.13885/j.issn.0455-2059.2020.01.007
[19] LI Zhanling, LI Wen, LI Zhanjie, et al. Responses of runoff and its extremes to climate change in the upper catchment of the Heihe River Basin, China [J]. Atmosphere, 2023, 14(3): 539. DOI: 10.3390/atmos14030539
[20] 芦倩. 祁连山排露沟流域植被类型变化对径流过程的影响[D]. 兰州: 甘肃农业大学, 2022.93-102.[LU Qian. Effect of vegetation type change on runoff in Pailugou catchment of Qilian mountains [D]. Lanzhou: Gansu Agricultural University, 2022: 93-102]
[21] 牛赟, 刘贤德, 敬文茂, 等. 祁连山排露沟流域气温、冻土冻融与河川径流特征[J]. 林业科学, 2014, 50(1): 27-31. [NIU Yun, LIU Xiande, JING Wenmao, et al. Characteristics of temperature, soil freezing and thawing, and river flow in Pailugou watershed of Qilian Mountains [J]. Scientia Silvae Sinicae, 2014, 50(1): 27-31] DOI: 10.11707/j.1001-7488.20140105
[22] 王顺利, 刘贤德, 金铭, 等. 祁连山区气候变化与流域径流特征研究[J]. 干旱区资源与环境, 2011, 25(1): 162-165. [WANG Shunli, LIU Xiande, JIN Ming, et al. The impact of temperature and precipitation on the streamflow in the middle part of the Qilian Mountains, northwestern China. Journal of Arid Land Resources and Environment, 2011, 25(1): 162-165] DOI: 10.13448/j.cnki.jalre.2011.01.006
[23] 张立杰, 赵文智, 何志斌, 等. 祁连山典型小流域降水特征及其对径流的影响[J]. 冰川冻土, 2008, 30(5): 776-782. [ZHANG Lijie, ZHAO Wenzhi, HE Zhibin, et al. The characteristics of precipitation and its effects on runoff in a small typical catchment of Qilian Mountains [J]. Journal of Glaciology and Geocryology, 2008, 30(5): 776-782]
[24] 陈丽丽, 莫淑红, 巩瑶. 基于 Budyko 弹性系数法的佳芦河流域径流变化归因识别[J]. 水资源与水工程学报, 2021, 32(1): 110-116. [CHEN Lili, MO Shuhong, GONG Yao. Attribution identification of runoff change in Jialu River Basin based on Budyko elastic coefficient method [J]. Journal of Water Resources and Water Engineering, 2021, 32(1): 110-116] DOI: 10.11705/j.issn.1672-643X.2021.01.16
[25] 杨林, 赵广举, 穆兴民, 等. 基于 Budyko 假设的洮河与大夏河径流变化归因识别[J]. 生态学报, 2021, 41(21): 8421-8429. [YANG Lin, ZHAO Guangju, MU Xingmin, et al. Attribution of runoff variations in Tao River and Daxia River based on Budyko hypothesis [J]. Acta Ecologica Sinica, 2021, 41(21): 8421-8429] DOI: 10.5846/stxb202007221924
[26] 苗正伟, 路梅, 丁志宏. 基于时变 Budyko 模型的滹沱河上游径流变化归因分析[J]. 长江科学院院报, 2022, 39(7): 29-35. [MIAO Zhengwei, LU Mei, DING Zhihong. Cause analysis of runoff change in the upper reaches of Hutuo River based on time-varying Budyko-type equation [J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(7): 29-35] DOI: 10.11988/ckyyb.20210284
[27] 王秀云, 孙玉军. 森林生态系统碳储量估测方法及其研究进展[J]. 世界林业研究, 2008, 21(5): 24-29. [WANG Xiuyun, SUN Yujun. Review on research and estimation methods of carbon storage in forest ecosystem [J]. World Forestry Research, 2008, 21(5): 24-29] DOI: 10.13348/j.cnki.sjlyyj.2008.05.007
[28] 彭守璋, 赵传燕, 郑祥霖, 等. 祁连山青海云杉林生物量和碳储量空间分布特征[J]. 应用生态学报, 2011, 22(7): 1689-1694. [PENG Shouzhang, ZHAO Chuanyan, ZHENG Xianglin, et al. Spatial distribution characteristics of the biomass and carbon storage of Qinghai spruce(Picea crassifolia)forests in Qilian Mountains [J]. Chinese Journal of Applied Ecology, 2011, 22(7): 1689-1694] DOI: 10.13287/j.1001-9332.2011.0240
[29] 牛赟, 毛广雄. 林区资源与生态生态环境调查教程[M]. 兰州: 兰州大学出版社, 2021: 65-78. [NIU Yun, MAO Guangxiong. Forest resources and ecological environment survey course [M]. Lanzhou: Lanzhou University Press, 2021: 65-78]
[30] 刘建泉, 李进军, 郝虎, 等. 祁连山青海云杉林生物量与碳储量及其影响因素分析[J]. 现代农业科技, 2017(12): 140-143+146. [LIU Jianquan, LI Jinjun, HAO Hu, et al. Analysis on biomass and carbon storage of Picea crassifolia forest in Qilian Mountains and its influence factors [J]. Modern Agricultural Science and Technology, 2017(12): 140-143+146]
[31] 闫宇会, 薛宝林 张路方, 等. 基于 MOD16 产品的黑河流域蒸散量时空分布特征[J]. 节水灌溉, 2019, 44(9): 85-92. [YAN Yuhui, XUE Baolin, ZHANG Lufang, et al. Temporal and spatial distribution characteristics of evapotranspiration in the Heihe River Basin based on MOD16 product [J].Water Saving Irrigation, 2019, 44(9): 85-92]
[32] 祁晓凡, 李文鹏, 崔虎群, 等. 黑河流域中游盆地地表水与地下水转化机制研究[J]. 水文地质工程地质, 2022, 49(3): 29-43. [QI Xiaofan, LI Wenpeng, CUI Huqun, et al. Study on the conversion mechanism of surface water and groundwater in the middle reaches of the Heihe River Basin [J]. Hydrogeology and Engineering Geology, 2022, 49(3): 29-43] DOI: 10.16030/j.cnki.issn.1000-3665.202202003
[33] 何旭强, 张勃, 孙力炜, 等. 气候变化和人类活动对黑河上中游径流量变化的贡献率[J]. 生态学杂志, 2012, 31(11): 2884-2890. [HE Xuqiang, ZHANG Bo, SUN Liwei, et al. Contribution rates of climate change and human activity on the runoff in upper and middle reaches of Heihe River Basin [J]. Chinese Journal of Ecology, 2012, 31(11): 2884-2890] DOI: 10.13292/j.1000-4890.2012.0474
[34] 潘燕辉, 张辉, 马金珠. 气候变化和人类活动对黑河水资源的影响[J]. 人民黄河, 2012, 34(5): 55-60. [PAN Yanhui, ZHANG Hui, MA Jinzhu. Quantities research of climate change and human activities affecting water resources [J]. Yellow River, 2012, 34(5): 55-60] DOI: 10.3969/j.issn.1000-1379.2012.05.019

相似文献/References:

[1]许炯心,孙季.嘉陵江流域年径流量的变化及其原因[J].山地学报,2007,(02):153.

备注/Memo

备注/Memo:
收稿日期(Received date): 2023- 09- 06; 改回日期(Accepted date): 2023-12-16
基金项目(Foundation item): 国家自然科学基金(32060247); 甘肃省自然科学基金重点项目(22JR5RG1029); 淮安市自然科学研究计划(HAB202159)。[National Natural Science Foundation of China(32060247); Key Project of Natural Science Foundation of Gansu Province(22JR5RG1029); Natural Science Research Program of Huai'an(HAB202159)]
作者简介(Biography): 牛赟(1974-),男,甘肃通渭人,博士,教授,主要研究方向:生态水文。 [NIU Yun(1974-), male, born in Tongwei, Gansu province, Ph.D., professor, research on ecological hydrology] E-mail:747650046@qq.com
*通讯作者(Corresponding author): 赵维俊(1981-),男,博士,研究员,主要研究方向:生态学。[ZHAO Weijun(1981-), male, Ph.D., professor of research, research on ecology] E-mail: zhaoweijun1019@126.com
更新日期/Last Update: 2023-11-30