[1]杨 霞,何 清,赵克明,等.基于加密探空资料的塔里木东风低空急流特征[J].山地学报,2023,(6):836-845.[doi:10.16089/j.cnki.1008-2786.000791]
 YANG Xia,HE Qing,ZHAO Keming,et al.Characteristics of Easterly Low-Level Jet over Tarim Based on Encrypted Radiosonde Observations[J].Mountain Research,2023,(6):836-845.[doi:10.16089/j.cnki.1008-2786.000791]
点击复制

基于加密探空资料的塔里木东风低空急流特征
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第6期
页码:
836-845
栏目:
山地环境
出版日期:
2023-11-25

文章信息/Info

Title:
Characteristics of Easterly Low-Level Jet over Tarim Based on Encrypted Radiosonde Observations
文章编号:
1008-2786-(2023)6-836-10
作者:
杨 霞1何 清2赵克明1苏亚乔1
(1. 新疆维吾尔自治区气象台,乌鲁木齐 830002; 2. 中国气象局乌鲁木齐沙漠气象研究所,乌鲁木齐 830002)
Author(s):
YANG Xia1 HE Qing2 ZHAO Keming1 SU Yaqiao1
(1. Xinjiang Uygur Autonomous Region Meteorological Observatory, Urumqi 830002, China; 2. Institute of Desert Meteorology,China Meteorological Administration, Urumqi 830002, China)
关键词:
东风低空急流 探空观测 降水 塔里木盆地 南疆
Keywords:
easterly low level jet radiosonde observation rainfall the Tarim basin southern Xinjiang
分类号:
P442
DOI:
10.16089/j.cnki.1008-2786.000791
文献标志码:
A
摘要:
塔里木东风低空急流位于中国西北干旱区,是造成新疆沙尘暴、暴雨、强对流等灾害性天气的直接影响因素。研究塔里木东风低空急流,一般基于每日两次的常规观测资料,时间分辨率较粗,不能完整反映其特征。本文利用2022年5月1日至30日新疆首次开展的大范围加密探空观测资料,揭示塔里木东风低空急流的精细特征及其与南疆降水的关系。结果表明:(1)加密观测期间,共出现17个塔里木东风低空急流日(占总观测日数的56.7%); 与常规探空观测时次(0000 UTC和 1200 UTC)相比,两个加密观测时次(0600 UTC和1800 UTC)观测到的塔里木东风低空急流的总次数更多。(2)在6个加密观测站中,仅若羌、库尔勒和民丰观测到塔里木东风低空急流; 在同一时次,最多观测到两个站点同时出现塔里木东风低空急流。(3)若羌站出现塔里木东风低空急流的次数最多,平均风速最大,平均急流高度最高,急流的强度等级最强; 库尔勒站其次。塔里木东风低空急流在若羌站呈现明显的入夜加强,正午减弱的特征; 在库尔勒站和民丰站的昼夜变化不明显。(4)2022年5月南疆70.0%以上的降水日中有塔里木东风低空急流,暴雨日中塔里木东风低空急流的出现率高达83.3%; 有塔里木东风低空急流影响时,南疆的降水范围更广,降水强度更大。研究结果可加深对干旱区低空急流的认识,并为南疆防灾减灾提供参考。
Abstract:
Low-level jet typically refers to a strong and narrow air current existed in a boundary layer or lower troposphere. Low-level jet has a significant impact on global weather and climate. The easterly low-level jet over Tarim(hereinafter abbreviated as TELLJ)is formed in the arid region of northwest China, which plays a crucial role in creating regional catastrophic weather, such as sandstorms, heavy rainfall, and strong convection in Xinjiang. Past research on TELLJ primarily relies on routine twice-daily observational data with coarse temporal resolution, which cannot fully capture its behavior.
In this paper, the fine features of TELLJ and its relationship with precipitation in southern Xinjiang was revealed by using the first-hand data of large-scale encrypted radiosonde observation conducted for the first time in Xinjiang from May 1 to May 30, 2022, which included daily variation of TELLJ, and the differences in occurrence frequency, wind speed, height, and intensity between conventional and unconventional observation times.
It found that(1)during the encrypted observation period, a total of 17 days with occurrences of TELLJ appeared, accounting for 56.7% of the total observation days; more occurrences of TELLJ was recorded at two encrypted observation times(0600 UTC and 1800 UTC)than those observed at routine radiosonde observation times(0000 UTC and 1200 UTC).(2)Among the six encrypted observation stations, only at Ruoqiang, Korla, and Minfeng, TELLJ was recorded; at the same observation time, TELLJ was observed simultaneously at most two stations.(3)TELLJ occurred frequently at Ruoqiang with the highest average wind speed, the highest average jet height, and the strongest intensity; and similarly at Korla it followed the pattern. At Ruoqiang, TELLJ exhibited a distinct pattern of strengthening at night and weakening around noon, whereas there was little diurnal variation at Korla and Minfeng.(4)In May 2022, during more than 70.0% of precipitation days in southern Xinjiang it could witness TELLJ, and the occurrence rate of TELLJ in heavy rains was as high as 83.3%. In case of any TELLJ in southern Xinjiang, there would be a tendency of broader spatial distribution and higher intensity of precipitation.
It could be concluded that the spatial structure of TELLJ and its contribution to catastrophic weather events such as heavy rainfall and severe convective phenomena differ distinctly from those in China's monsoon regions. This study can deepen the understanding of low-level jets in arid regions and provides references for disaster prevention and mitigation in southern Xinjiang, China.

参考文献/References:

[1] 孙淑清, 马廷标, 孙纪改. 低空急流与暴雨相互关系的对比分析[J]. 气象学报, 1979, 37(4): 36-44. [SUN Shuqing, MA Tingbiao, SUN Jigai. On the relation between the low level jet and rainstorm [J]. Acta Meteorologica Sinica, 1979, 37(4): 36-44]
[2] 苗爱梅, 武捷, 赵海英, 等. 低空急流与山西大暴雨的统计关系及流型配置[J]. 高原气象, 2010, 29(4): 39-946. [MIAO Aimei, WU Jie, ZHAO Haiying, et al. Statistical relation and flow pattern of low-level jet and heavy rainstorm in Shanxi [J]. Plateau Meteorology, 2010, 29(4): 939-946]
[3] 李超, 隆霄, 曹怡清, 等. 贺兰山东麓20次暴雨过程环流形势及低空急流特征[J]. 干旱区研究, 2022, 39(6): 1753-1767. [LI Chao, LONG Xiao, CAO Yiqing, et al. Circulation pattern and LLJ characteristics of 20 rainstorm events in the eastern reign of the Helan Mountain [J]. Arid Zone Research, 2022, 39(6): 1753-1767] DOI: 10.13866/j.azr.2022.06.06
[4] 王东阡, 张耀存. 中国东部西南低空急流日变化特征及其机制[J]. 地球物理学报, 2012, 55(8): 2498-2507. [WANG Dongqian, ZHANG Yaocun. Diurnal variation of the south-westerly low-level jet over eastern China and its mechanism [J]. Chinese Journal of Geophysics, 2012, 55(8): 2498-2507] DOI: 10.6038/j.issn.0001-5733.2012.08.002
[5] 刘鸿波, 何明洋, 王斌, 等. 低空急流的研究进展与展望[J]. 气象学报, 2014, 72(2): 191-206. [LIU Hongbo, HE Mingyang, WANG Bin, et al. Advances in low-level jet research and future prospects [J]. Acta Meteorologica Sinica, 2014, 72(2): 191-206] DOI: 10.11676/qxxb2014.022
[6] 李兴生, 叶卓佳, 刘林勤. 夜间低空急流的分析研究[J]. 大气科学, 1981, 5(3): 310-317. [LI Xingsheng, YE Zhuojia, LIU Linqin. An analytical research on the lower nocturnal jet [J]. Chinese Journal of Atmospheric Sciences, 1981, 5(3): 310-317]
[7] 郝为锋, 王庆安, 苏晓冰, 等. 丘陵山区低空急流特性分析[J]. 气象科学, 1996, 16(3): 256-263. [HAO Weifeng, WANG Qing'an, SU Xiaobing. The analysis of the characteristic of low-level-jet(LLJ)in hilly area [J]. Journal of Meteorological Sciences, 1996, 16(3): 256-263]
[8] 赛瀚, 苗峻峰. 中国地区低空急流研究进展[J]. 气象科技, 2012, 40(5): 766-771. [SAI Han, MIAO Junfeng. A review of low-level jet research in China [J]. Meteorological Science and Technology, 2012, 40(5): 766-771]
[9] 陶诗言. 中国之暴雨[M]. 北京: 科学出版社, 1980: 255. [TAO Shiyan. China's heavy rainfall [M]. Beijing: Science Press, 1980: 255]
[10] 林志东, 陈兴伟, 林木生, 等. 东南沿海西溪流域暴雨洪水的时空变化特征[J]. 山地学报, 2017, 35(4): 488-495. [LIN Zhidong, CHEN Xingwei, LIN Musheng, et al. Temporal and spatial variations of storm-floods in Xixi watershed of southeast coastal region [J]. Mountain Research, 2017, 35(4): 488-495] DOI: 10.16089/j.cnki.1008-2786.000246
[11] 王文, 马超, 张志, 等. 北京云蒙山片区“7·16”群发性暴雨泥石流特征研究[J]. 山地学报, 2022, 40(4): 626-636. [WANG Wen, MA Chao, ZHANG Zhi, et al. The characteristics of rainstorm-induced clustering debris flows on July 16, Yunmeng Mountain, Beijing, China [J]. Mountain Research, 2022, 40(4): 626-636] DOI: 10.16089/j.cnki.1008-2786.000698
[12] 朱乾根, 周伟灿, 张海霞. 高低空急流耦合对长江中游强暴雨形成的机理研究[J]. 南京气象学院学报, 2001, 24(3): 308-314. [ZHU Qiangen, ZHOU Weican, ZHANG Haixia. Mechanism of the formation of torrential rain by coupled high /low level jets over the middle reaches of the Yangtze River [J]. Journal of Nanjing Institute of Meteorology, 2001, 24(3): 308-314]
[13] 孙淑清, 翟国庆. 低空急流的不稳定性及其对暴雨的触发作用[J]. 大气科学, 1980, 4(4): 327-337. [SUN Shuqing, ZHAI Guoqing. On the instability of the low level jet and its trigger function for the occurrence of heavy rain-storms [J]. Chinese Journal of Atmospheric Sciences, 1980, 4(4): 327-337]
[14] 何雪莉, 李亚男, 石天宇, 等. 1961—2018年太行山东西侧降水变化[J]. 山地学报, 2022, 40(1): 43-55. [HE Xueli, LI Yanan, SHI Tianyu, et al. Precipitation changes to the eastern and western sides of the Taihang Mountains from 1961 to 2018 [J]. Mountain Research, 2022, 40(1): 43-55] DOI: 10.16089/j.cnki.1008-2786.000654
[15] 梁捷宁, 张镭, 田鹏飞, 等. 黄土高原复杂地形上边界层低空急流对近地层湍流的影响[J]. 地球物理学报, 2014, 57(5): 1387-1398. [LIANG Jiening, ZHANG Lei, TIAN Pengfei, et al. Impact of low-level jets on turbulent in nocturnal boundary layer over complex terrain of the Loess Plateau [J]. Chinese Journal of Geophysics, 2014, 57(5): 1387-1398] DOI: 10.6038/cjg20140504
[16] 陈晋北, 吕世华, 余晔. 绿洲和戈壁近地面层热量和物质输送特征对比[J]. 地球物理学报, 2012, 55(6): 1817-1830. [CHEN Jinbei, LYU Shihua, YU Ye. Comparison of heat and matter transfer characteristics in the surface layers of oasis and Gobi [J]. Chinese Journal of Geophysics, 2012, 55(6): 1817-1830] DOI: 10.6038/j.issn.0001-5733.2012.06.003
[17] 肖之盛, 孟凡, 徐峻, 等. 低空急流理论及其对空气污染物传输影响研究进展[J]. 环境工程技术学报, 2019, 9(2): 111-118. [XIAO Zhisheng, MENG Fan, XU Jun, et al. Research advances in Low-Level Jets theory and their impact on air pollutant transmission [J]. Journal of Environmental Engineering Technology, 2019, 9(2): 111-118] DOI: 10.12153/j.issn.1674-991X.2018.11.200
[18] BONNER W D. Climatology of the low level jet [J]. Monthly Weather Review, 1968, 96(12): 833-850.
[19] WHITEMAN C D, BIAN Xindi, ZHONG Shiyuan. Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains [J]. Journal of Applied Meteorology, 1997, 36(10): 1363–1376.
[20] 李佳. 初夏华南低空急流及其日变化对华南降水的影响[D]. 南京: 南京信息工程大学, 2021: 58-59. [LI Jia. Influence of low-level jets in southern China in early summer and their diurnal variation on precipitation in southern China [D]. Nanjing: Nanjing University of Information Science and Technology, 2021: 58-59]
[21] 王蕾, 张文龙, 周军. 中国西南低空急流活动的统计分析[J]. 南京气象学院学报, 2003, 26(6): 797-805. [WANG Lei, ZHANG Wenlong, ZHOU Jun. Statistic analysis on the south-westerly LLJ in China [J]. Journal of Nanjing Institute of Meteorology, 2003, 26(6): 797-805]
[22] 赛瀚. 环渤海地区低空急流时空结构特征研究[D]. 南京: 南京信息工程大学, 2012: 42-63. [SAI Han. The spatial-temporal structure characteristics of low-level jet over Bohai rim [D]. Nanjing: Nanjing University of Information Science and Technology, 2012: 42-63]
[23] 邓子风. 干旱、半干旱地区低空急流特征与暴雨关系的研究[J]. 新疆气象, 1990, 13(12): 1-8. [DENG Zifeng. Study on the characteristics of low-level jets and their relationship with heavy rain in arid and semi-arid regions [J]. Xinjiang Meteorology, 1990, 13(12): 1-8]
[24] 杨霞, 周鸿奎, 赵克明, 等. 塔里木东风低空急流特征分析[J]. 干旱区研究, 2021, 38(5): 1216-1225. [YANG Xia, ZHOU Hongkui, ZHAO Keming, et al. Analysis of the characteristics of the easterly low-level jet in Tarim [J]. Arid Zone Research, 2021, 38(5): 1216-1225] DOI: 10.13866/ j.azr.2021. 05. 03
[25] 刘华悦, 葛觐铭, 黄建平. 塔克拉玛干低空急流特征分析[J]. 干旱气象, 2015, 33(3): 405-411+420. [LIU Huayue, GE Jinming, HUANG Jianping. Characteristics of low level jet over the Taklimakan Desert [J]. Journal of Arid Meteorology, 2015, 33(3): 405-411+420] DOI: 10.11755 /j.issn.1006-7639(2015)-03-0405
[26] 王柯, 何清, 王敏仲, 等. 塔克拉玛干沙漠腹地特征层风场特征[J]. 干旱气象, 2011, 29(3): 302-305. [WANG Ke, HE Qing, WANG Minzhong, et al. Wind field feature of characteristic layer in the hinterland of the Taklimakan Desert [J]. Journal of Arid Meteorology, 2011, 29(3): 302-305]
[27] 张建涛, 王敏仲, 何清, 等. 塔克拉玛干沙漠腹地夏季夜间低空急流变化特征[J]. 中国沙漠, 2020, 40(5): 89-100. [ZHANG Jiantao, WANG Minzhong, HE Qing, et al. Variation characteristics of nocturnal low-level jet in summer over the hinterland of Taklimakan Desert [J]. Journal of Desert Research, 2020, 40(5): 89-100] DOI: 10.7522/j.issn.1000-694X.2020.00056
[28] 邓子风, 王扣兰, 王政宇. 塔里木东风低空急流与南疆降水[J]. 气象, 1982(2): 7-10. [DENG Zifeng, WANG Koulan, WANG Zhengyu. Low-level jets in the eastern Tianshan Mountains and precipitation in southern Xinjiang [J]. Meteorology, 1982(2): 7-10]
[29] YAO Junqiang, CHEN Yaning, GUAN Xuefeng, et al. Recent climate and hydrological changes in a mountain-basin system in Xinjiang, China [J]. Earth-Science Reviews, 2022, 226: 103957. DOI: 10.1016/j.earscirev.2022.103957
[30] ZHAO Yong, YU Xiaojing, YAO Junqiang, et al. The concurrent effects of the South Asian monsoon and the plateau monsoon over the Tibetan Plateau on summer rainfall in the Tarim Basin of China [J]. International Journal of Climatology, 2019, 39: 74–88. DOI: 10.1002/joc.5783
[31] 杨霞, 张云惠, 张超, 等. 南疆西部“5·21”极端大暴雨成因分析[J]. 沙漠与绿洲气象, 2020, 14(1): 21-30. [YANG Xia, ZHANG Yunhui, ZHANG Chao, et al. Causation analysis of the 21 May 2018 torrential rain in the west of southern Xinjiang [J]. Desert and Oasis Meteorology, 2020, 14(1): 21-30] DOI: 10.12057/j.issn.1002-0799.2020.01.003
[32] 孙颖姝. 低空急流与新疆强降水的关系[D]. 南京: 南京信息工程大学, 2019: 22-41. [SUN Yingshu. The relationship between low-level jet and heavy precipitation in Xinjiang [D]. Nanjing: Nanjing University of Information Science and Technology, 2019: 22-41 ]
[33] 倪明霞, 段峥嵘, 夏建新. 新疆南疆周边高山冰川融化及其未来水资源安全风险[J]. 山地学报, 2022, 40(3): 329-342. [NI Mingxia, DUAN Zhengrong, XIA Jianxin. Melting of mountain glacier and its risk to future water resources in southern Xinjiang, China [J]. Mountain Research, 2022, 40(3): 329-342] DOI: 10.16089/j.cnki.1008-2786.000675
[34] 张俊兰, 杨霞, 施俊杰. 青藏高原天气系统对昆仑山北坡一次罕见暴雨过程影响分析[J]. 高原气象, 2021, 40(5): 1002-1011. [ZHANG Junlan, YANG Xia, SHI Junjie. Analysis of the influence of the Qinghai-Xizang Plateau weather system on a rare rainstorm process on the northern slope of Kunlun Mountain [J]. Plateau Meteorology, 2021, 40(5): 1002-1011] DOI: 10.7522/j.issn.1000-0534.2020.00111
[35] 张家宝, 邓子风. 新疆降水概论[M]. 北京: 气象出版社, 1987: 1-400. [ZHANG Jiabao, DENG Zifeng. Introduction to precipitation in Xinjiang [M]. Beijing: China Meteorological Press, 1987: 1-400]
[36] YAN Yan, CAI Xuhui, WANG Xuesong, et al. Low-level jet climatology of China derived from long-term radiosonde observations [J]. Journal of Geophysical Research: Atmospheres, 2021, 126: e2021JD035323. DOI: 10.1029/2021JD035323
[37] DU Yu, ZHANG Qinghong, CHEN Yileng, et al. Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer [J]. Journal of Climate, 2014, 27(5): 574715767. DOI: 10.1175/JCLI-D-13-00571.1

备注/Memo

备注/Memo:
收稿日期(Received date): 2023- 06-18; 改回日期(Accepted date): 2023-11-22
基金项目(Foundation item): 国家自然科学基金(42065001,42030612)。[National Natural Science Foundation of China(42065001, 42030612)]
作者简介(Biography): 杨霞(1980-),女,新疆阿图什人,硕士,正高级工程师,主要研究方向:灾害性天气机理。[YANG Xia(1980-), female, born in Atushi, Xinjiang Uygur Autonomous Region, M.Sc., professor of engineering, research on the mechanism of disastrous weather] E-mail: yangxia921@163.com
更新日期/Last Update: 2023-11-30