参考文献/References:
[1] 易桂花, 张廷斌, 何奕萱, 等. 四种气温空间插值方法适用性分析[J]. 成都理工大学学报(自然科学版), 2020, 47(1): 115-128. [YI Guihua, ZHANG Tingbin, HE Yixuan, et al. Applicability analysis of four spatial interpolation methods for air temperature [J]. Journal of Chengdu University of Technology(Science and Technology Edition), 2020, 47(1): 115-128] DOI: 10.3969/j.issn.1671-9727.2020.01.11
[2] 王莹, 苏永秀, 李政. 广西西部山区日最低气温短序列订正方法[J]. 山地学报, 2012, 30(2): 186-194. [WANG Ying, SU Yongxiu, LI Zheng. Adjusting methods for daily minimum temperature series in high altitude mountainous areas of western Guangxi [J]. Mountain Research, 2012, 30(2): 186-194] DOI: 10.16089/j.cnki.1008-2786.2012.02.013
[3] 王晶, 赵龙, 吴辉, 等. 西南地区城市化进程加剧局地气象条件的空间差异[J]. 山地学报, 2022, 40(1): 120-135. [WANG Jing, ZHAO Long, WU Hui, et al. Urbanization magnifies spatial variations of local meteorological conditions in southwest China [J]. Mountain Research, 2022, 40(1): 120-135] DOI: 10.16089/j.cnki.1008-2786.000660
[4] 李叶, 张艳红, 陈子琦, 等. 中高纬度山区气温空间化的方法比较研究——以大兴安岭北麓为例[J]. 山地学报, 2021, 39(2): 174-182. [LI Ye, ZHANG Yanhong, CHEN Ziqi, et al. Comparative study on spatialization methods of air temperature in middle and high latitude mountainous areas: A case study of northern foot of the Daxing'anling Mountains [J]. Mountain Research, 2021, 39(2): 174-182] DOI: 10.16089/j.cnki.1008-2786.000585
[5] 潘留杰, 薛春芳, 王建鹏, 等. 一个简单的格点温度预报订正方法[J]. 气象, 2017, 43(12): 1584-1593. [PAN Liujie, XUE Chunfang, WANG Jianpeng, et al. A simple grid temperature forecast correction method [J]. Meteorological Monthly, 2017, 43(12): 1584-1593] DOI: 10.7519/j.issn.1000-0526.2017.12.015
[6] 戴翼, 何娜, 付宗钰, 等. 北京智能网格温度客观预报方法(BJTM)及预报效果检验[J]. 干旱气象, 2019, 37(2): 339-344+350. [DAI Yi, HE Na, FU Zongyu, et al. Beijing intelligent grid temperature objective prediction method(BJTM)and verification of forecast result [J]. Journal of Arid Meteorology, 2019, 37(2): 339-344+350] DOI: 10.11755/j.issn.1006-7639(2019)-02-0339
[7] 赵婷婷, 高凌峰, 黄荟羽, 等. 辽阳地区智能网格产品气温预报检验订正[J]. 现代农业科技, 2023(2): 159-163. [ZHAO Tingting, GAO Lingfeng, HUANG Huiyu, et al. Test correction of intelligent grid product temperature forecast in Liaoyang area [J]. Modern Agricultural Science and Technology, 2023(2): 159-163] DOI: 10.3969/j.issn.1007-5739.2023.02.037
[8] 张成军, 纪晓玲, 马金仁, 等. 多种数值预报及其释用产品在宁夏天气预报业务中的检验评估[J]. 干旱气象, 2017, 35(1): 148-156. [ZHANG Chengjun, JI Xiaoling, MA Jinren, et al. Verification of numerical forecast and its application products in weather forecast in Ningxia [J]. Journal of Arid Meteorology, 2017, 35(1): 148-156] DOI: 10.11755/j.issn.1006-7639(2017)-01-0148
[9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Advances in Neural Information Processing Systems, 2012, 25(2): 1-9. DOI: 10.1145/3065386
[10] 杨绚, 代刊, 朱跃建. 深度学习技术在智能网格天气预报中的应用进展与挑战[J]. 气象学报, 2022, 80(5): 649-667. [YANG Xuan, DAI Kan, ZHU Yuejian. Progress and challenges of deep learning techniques in intelligent grid weather forecasting [J]. Acta Meteorologica Sinica, 2022, 80(5): 649-667] DOI: 10.11676/qxxb2022.051
[11] 夏景明, 戴如晨, 谈玲. 一种基于MSF-Net网络模型的短时降水预测方法:202310715521.4 [P]. 2023- 07-18. [XIA Jingming, DAI Ruchen, TAN Ling. A short-term precipitation prediction method based on MSF-Net network model: 202310715521.4 [P]. 2023- 07-18]
[12] 陈先昌. 基于卷积神经网络的深度学习算法与应用研究[D]. 杭州: 浙江工商大学, 2014: 1-22. [CHEN Xianchang. Research on algorithm and application of deep learning based on convolutional neural network [D]. Hangzhou: Zhejiang Technology and Business University, 2014: 1-22]
[13] 门晓磊, 焦瑞莉, 王鼎, 等. 基于机器学习的华北气温多模式集合预报的订正方法[J]. 气候与环境研究, 2019, 24(1): 116-124. [MEN Xiaolei, JIAO Ruili, WANG Ding, et al. A temperature correction method for multi-model ensemble forecast in north China based on machine learning [J]. Climatic and Environmental Research, 2019, 24(1): 116-124] DOI: 10.3878/j.issn.1006-9585.2018.18049
[14] 陈鹤, 蔡荣辉, 陈静静, 等. 基于深度学习方法的气温预报技术应用与评估[J]. 气象, 2022, 48(11): 1373-1383. [CHEN He, CAI Ronghui, CHEN Jingjing, et al. Application and evaluation of temperature forecast based on deep learning method [J]. Meteorological Monthly, 2022, 48(11): 1373-1383] DOI: 10.7519/j.issn,1000-0526.2002.070101
[15] 王怡, 普运伟. 基于CNN-BiLSTM-Attention融合神经网络的大气温度预测[J]. 中国水运, 2023, 23(1): 25-27. [WANG Yi, PU Yunwei. Prediction of atmospheric temperature based on CNN-BiLSTM-Attention fusion neural network [J]. China Water Transport, 2023, 23(1): 25-27]
[16] 季彦东. 基于改进LSTM模型的大气温度预测[J]. 通化师范学院学报, 2020, 41(8): 82-86. [JI Yandong. Atmospheric temperature prediction based on improved LSTM model [J]. Journal of Tonghua Normal University, 2020, 41(8): 82-86] DOI: 10.13877/j.cnki.cn22-1284.2020.08.015
[17] 王彦卷. 基于CNN-LSTM和气象要素关联的气温时空预测[D]. 银川: 宁夏大学, 2022: 1-60. [WANG Yanjuan. Spatiotemporal temperature prediction based on CNN-LSTM and meteorological elements correlation [D]. Yinchuan: Ningxia University, 2022: 1-60]
[18] 雷蕾, 徐邦琪, 高庆九, 等. 基于卷积神经网络的长江流域夏季日最高温度延伸期预报方法研究[J]. 大气科学学报, 2022, 45(6): 835-849.[LEI Lei, XU Bangqi, GAO Qingjiu, et al. Extended-range forecasting method of summer daily maximum temperature in the Yangtze river basin based on convolutional neural network [J]. Transactions of Atmospheric Sciences, 2022, 45(6): 835-849] DOI: 10.13878/j.cnki.dqkxxb.20211101001
[19] 施恩, 李骞, 顾大权, 等. 基于局部特征的卷积神经网络模型[J]. 计算机工程, 2018, 44(2): 282-286. [SHI En, LI Qian, GU Daquan, et al. Convolutional neural network model based on local features [J]. Computer Engineering, 2018, 44(2): 282-286] DOI: 10.3969/j.issn.1000-3428.2018.02.048
[20]马司周. 基于深度学习的多序列气温预测研究[D]. 兰州: 兰州理工大学, 2022: 34-51. [MA Sizhou. Research on multi-series temperature prediction based on deep learning [D]. Lanzhou: Lanzhou University of Technology, 2022: 34-51] DOI: 10.27206/d.cnki.ggsgu.2022.000500
[21] 崔海霞, 刘娜. 甘肃省旅游景点温度预报质量检验评估[J]. 甘肃科技, 2021, 37(5): 83-85+101. [CUI Haixia, LIU Na. Quality inspection and evaluation of temperature forecast for tourist attractions in Gansu [J]. Gansu Science and Technology, 2021, 37(5): 83-85+101]
[22] 王飞飞. 基于改进卷积神经网络算法的研究与应用[D]. 南京: 南京邮电大学, 2016: 10-14. [WANG Feifei. Research and applications based the improved convolutional neural network [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2016: 10-14]