参考文献/References:
[1] 柴岫. 中国泥炭的形成与分布规律的初步探讨[J]. 地理学报, 1981, 36(3): 237-253. [CHAI Xiu. The formation and types of peat in China and the law of governing its distribution [J]. Acta Georaphica Sinica, 1981, 36(3): 237-253] DOI: 10.11821/xb198103001
[2] 赵红艳, 冷雪天, 王升忠. 长白山地泥炭分布、沉积速率与全新世气候变化[J]. 山地学报, 2002, 20(5): 513-518. [ZHAO Hongyan, LENG Xuetian, WANG Shengzhong. Distribution, accumulation rate of peat in the Changbaishan Mountains and climate change in Holocene [J]. Mountain Research, 2002, 20(5): 513-518] DOI: 10.16089/j.cnki.108-2786.202.05.01
[3] CONG Jinxin, GAO Chuanyu, HAN Dongxue, et al. Stability of the permafrost peatlands carbon pool under climate change and wildfires during the last 150 years in the northern Great Khingan Mountains, China [J]. Science of the Total Environment, 2020, 712: 136476. DOI: 10.1016/j.scitotenv.2019.136476
[4] YU Zicheng, LOISEL J, BROSSEAU D P, et al. Global peatland dynamics since the Last Glacial Maximum [J]. Geophysical Research Letters, 2010, 37(13): L13402. DOI: 10.1029/2010gl043584
[5] ZHANG Yan, YANG Ping, GAO Chuanyu, et al. Peat properties and Holocene carbon and nitrogen accumulation rates in a peatland in the Xinjiang Altai Mountains, northwestern China [J]. Journal of Geophysical Research-Biogeosciences, 2020, 125(12): 14. DOI: 10.1029/2019jg005615
[6] GORHAM E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming [J]. Ecological Applications, 1991, 1(2): 182-195. DOI: 10.2307/1941811
[7] LEIFELD J, STEFFENS M, GALEGO-SALA A. Sensitivity of peatland carbon loss to organic matter quality [J]. Geophysical Research Letters, 2012, 39(14): L14704. DOI: 10.1029/2012gl051856
[8] XING Wei, BAO Kunshan, GALLEGO-SALA A V, et al. Climate controls on carbon accumulation in peatlands of northeast China [J]. Quaternary Science Reviews, 2015, 115: 78-88. DOI: 10.1016/j.quascirev.2015.03.005
[9] PORPORATO A, D’ODORICO P, LAIO F, et al. Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme [J]. Advances in Water Resources, 2003, 26(1): 45-58. DOI: 10.1016/s0309-1708(02)00094-5
[10] TURETSKY M R, WIEDER R K, VITT D H. Boreal peatland C fluxes under varying permafrost regimes [J]. Soil Biology and Biochemistry, 2002, 34(7): 907-912. DOI: 10.1016/s0038-0717(02)00022-6
[11] WANG Xianwei, SONG Changchun, WANG Jiaoyue, et al. Carbon release from Sphagnum peat during thawing in a montane area in China [J]. Atmospheric Environment, 2013, 75: 77-82. DOI: 10.1016/j.atmosenv.2013.04.056
[12] 张仲胜, 李敏, 宋晓林, 等. 气候变化对土壤有机碳库分子结构特征与稳定性影响研究进展[J]. 土壤学报, 2018, 55(2): 273-282. [ZHANG Zhongsheng, LI Min, SONG Xiaolin, et al. Effects of climate change on molecular structure and stability of soil carbon pool: A general review [J]. Acta Pedologica Sinica, 2018, 55(2): 273-282] DOI: 10.11766/trxb201707240324
[13] HODGKINS S B, RICHARDSON C J, DOMMAIN R, et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance [J]. Nature Communications, 2018, 9(1): 3640. DOI: 10.1038/s41467-018-06050-2
[14] 周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成: 机制和模型[J]. 北京林业大学学报, 2022, 44(10): 11-22. [ZHOU Zhenghu, LIU Lin, HOU Lei. Soil organic carbon stabilization and formation: Mechanism and model [J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22] DOI: 10.12171/j.1000-1522.20220183
[15] ZHOU Zhenghu, WANG Chuankuan, LUO Yiqi. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality [J]. Nature Communications, 2020, 11(1): 3072. DOI: 10.1038/s41467-020-16881-7
[16] 新疆阿尔泰山林业局. 中国自然保护区新疆阿尔泰山两河源综合科学考察[M]. 乌鲁木齐: 新疆科学技术出版社, 2003: 152-170. [Xinjiang Altay Forest Bureau. Comprehensive scientific investigation of Altay Mountains Two-River Source Nature Reserve in China [M]. Urumqi: Xinjiang Science and Technology Press, 2003: 152-170]
[17] 张彦. 新疆阿尔泰山区全新世泥炭发育特征及区域环境演变[D]. 长春: 中国科学院东北地理与农业生态研究所, 2016: 17-23. [ZHANG Yan. Peat development characteristics and regional environment evolution during the Holocene in Altai Mountains, Xinjiang [D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2016: 17-23]
[18] 谌小慧, 张彦, 武政, 等. 阿尔泰山多年冻土区泥炭沼泽有机碳储量估算及其影响因素[J]. 湿地科学, 2023, 21(6): 876-886. [CHEN Xiaohui, ZHANG Yan, WU Zheng, et al. Estimation of organic carbon stocks and their influence factors in the permafrost peatlands of the Altai Mountains [J]. Wetland Science, 2023, 21(6): 876-886 ] DOI: 10.13248/j.cnki.wetlandsci.2023.06.008
[19] 童伯良, 李树德, 张廷军. 中国阿尔泰山的冻土[J]. 冰川冻土, 1986, 8(4): 357-364. [TONG Boliang, LI Shude, ZHANG Tingjun. Frozen ground in the Altay Mountains of China [J]. Journal of Glaciology and Geocryology, 1986, 8(4): 357-364] DOI: 10.7522/j.issn.1000-0240.1986.0050
[20] 张彦, 马学慧, 刘兴土, 等. 新疆阿尔泰山区全新世泥炭丘形态、发育过程与泥炭堆积速率初探[J]. 第四纪研究, 2018, 38(5): 1221-1232. [ZHANG Yan, MA Xuehui, LIU Xingtu, et al. Preliminary study on morphology, development process and peat accumulation rate of palsas during the Holocene in the Altai Mountains, northern Xinjiang Autonomous Region, northwest China [J]. Quaternary Sciences, 2018, 38(5): 1221-1232] DOI: 10.11928/j.isn.1001-7410.2018.05.16
[21] HODGKINS S B, TFAILY M M, MCCALLEY C K, et al. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(16): 5819-5824. DOI: 10.1073/pnas.1314641111
[22] CONG Jinxin, GAO Chuanyu, XING Wei, et al. Historical chemical stability of carbon pool in permafrost peatlands in northern Great Khingan Mountains(China)during the last millennium, and its paleoenvironmental implications [J]. Catena, 2022, 209: 105853. DOI: 10.1016/j.catena.2021.105853
[23] 潘大东, 凌超豪, 徐晓花, 等. 福建梅花山泥炭腐殖化度记录的过去千年气候变化[J]. 第四纪研究, 2023, 43(1): 95-109. [PAN Dadong, LING Chaohao, XU Xiaohua, et al. The climate change over the past 1000 years by humification records of a peat core from Meihua Mountain in Fujian province [J]. Quaternary Sciences, 2023, 43(1): 95-109] DOI: 10.11928/j.issn.1001-7410.2023.01.08
[24] GAO Chuanyu, HE Jiabao, ZHANG Yan, et al. Fire history and climate characteristics during the last millennium of the Great Hinggan Mountains at the monsoon margin in northeastern China [J]. Global and Planetary Change, 2018, 162: 313-320. DOI: 10.1016/j.gloplacha.2018.01.021
[25] 丛金鑫. 近百年环境变化对大兴安岭泥炭沼泽碳库稳定性影响研究[D]. 长春: 中国科学院东北地理与农业生态研究所, 2021: 10-12, 23-24. [CONG Jinxin. The impact of global change on peatlands carbon pool in northern Great Khingan Mountains in recent hundred years [D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2021: 10-12, 23-24] DOI: 10.27536/d.cnki.gccdy.2021.000017
[26] ZHANG Yan, MEYERS P A, LIU Xingtu, et al. Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China [J]. Quaternary Science Reviews, 2016, 152: 19-30. DOI: 10.1016/j.quascirev.2016.09.016
[27] 潘蕊蕊, 李小雁, 胡广荣, 等. 青海湖流域季节性冻土区坡面土壤有机碳分布特征及其影响因素[J]. 生态学报, 2020, 40(18): 6374-6384. [PAN Ruirui, LI Xiaoyan, HU Guangrong, et al. Characteristics of soil organic carbon distribution and its controlling factors on hillslope in seasonal frozen area of Qinghai Lake Basin [J]. Acta Ecologica Sinica, 2020, 40(18): 6374-6384] DOI: 10.5846/stxb201910172176
[28] BRODER T, BLODAU T, BIESTER H, et al. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia [J]. Biogeosciences, 2012, 9(4): 1479-1491. DOI: 10.5194/bg-9-1479-2012, 2012
[29] LOU Yanjing, GAO Chuanyu, PAN Yanwen, et al. Niche modelling of marsh plants based on occurrence and abundance data [J]. Science of the Total Environment, 2018, 616-617: 198-207. DOI: 10.1016/j.scitotenv.2017.10.300
[30] 张勇, 胡海波, 黄玉洁, 等. 不同植被恢复模式对土壤有机碳分子结构及其稳定性的影响[J]. 环境科学研究, 2015, 28(12): 1870-1878. [ZHANG Yong, HU Haibo, HUANG Yujie, et al. Effects of different vegetation restoration models on molecular structure and stability of soil organic carbon [J]. Research of Environmental Sciences, 2015, 28(12): 1870-1878] DOI: 10.13198/j.issn.1001-6929.2015.12.08
[31] CONG Jinxin, GAO Chuanyu, ZHAO Haiyang, et al. Chemical stability of carbon pool in peatlands dominated by different plant types in Jilin province(China)and its potential influencing factors [J]. Frontiers in Ecology and Evolution, 2023, 11: 1171688. DOI: 10.3389/fevo.2023.1171688
[32] TURETSKY M R, KOTOWSKA A, BUBIER J, et al. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands [J]. Global Change Biology, 2014, 20(7): 2183-2197. DOI: 10.1111/gcb.12580
[33] WRIGHT E L, BLACK C R, CHEESMAN A W, et al. Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland [J]. Global Change Biology, 2011, 17(9): 2867-2881. DOI: 10.1111/j.1365-2486.2011.02448.x
[34] WANG Yiyun, WANG Hao, HE Jinsheng, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland [J]. Nature Communication, 2017, 8(1): 15972. DOI: 10.1038/ncomms15972
[35] RAO Zhiguo, SHI Fuxi, LI Yunxia. Long-term winter/summer warming trends during the Holocene revealed by α-cellulose δ18O/δ13C records from an alpine peat core from central Asia [J]. Quaternary Science Reviews, 2020, 232: 106217. DOI: 10.1016/j.quascirev.2020.106217
[36] DROLLINGER S, KNORR K H, KNIERZINGER W, et al. Peat decomposition proxies of Alpine bogs along a degradation gradient [J]. Geoderma, 2020, 369: 114331. DOI: 10.1016/j.geoderma.2020.114331
[37] CLARKSON B R, MOORE T R, FITZGERALD N B, et al. Water table regime regulates litter decomposition in restiad peatlands, New Zealand [J]. Ecosystems, 2014, 17(2): 317-326. DOI: 10.1007/s10021-013-9726-4
[38] LIU Hanxiang, GAO Chuanyu, WEI Chunfeng, et al. Evaluating the timing of the start of the Anthropocene from northeast China: Applications of stratigraphic indicators [J]. Ecological Indicators, 2018, 84: 738-747. DOI: 10.1016/j.ecolind.2017.09.040
[39] HELLER C, ELLERBROCK R H, ROBKOPF N, et al. Soil organic matter characterization of temperate peatland soil with FTIR-spectroscopy: Effects of mire type and drainage intensity [J]. European Journal of Soil Science, 2015, 66(5): 847-858. DOI: 10.1111/ejss.12279