[1]胡卸文,周永豪,何 坤,等.不同岩性区火后泥石流成灾机理[J].山地学报,2024,(4):535-545.[doi:10.16089/j.cnki.1008-2786.000843]
 HU Xiewen,ZHOU Yonghao,HE Kun,et al.Post-fire Debris Flow Mechanisms in Different Lithological Zones[J].Mountain Research,2024,(4):535-545.[doi:10.16089/j.cnki.1008-2786.000843]
点击复制

不同岩性区火后泥石流成灾机理
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第4期
页码:
535-545
栏目:
山地灾害
出版日期:
2024-07-25

文章信息/Info

Title:
Post-fire Debris Flow Mechanisms in Different Lithological Zones
文章编号:
1008-2786-(2024)4-535-11
作者:
胡卸文12周永豪1何 坤12曹希超1胡亚运3
(1.西南交通大学 地球科学与工程学院,成都 611756; 2.四川省环青藏高原交通廊道地质灾害生态化防治工程技术研究中心,成都 611756; 3.浙江省工程勘察设计院集团有限公司,浙江 宁波 315012)
Author(s):
HU Xiewen12 ZHOU Yonghao1 HE Kun12 CAO Xichao1 HU Yayun3
(1. Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China; 2. Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu 611756, China; 3. Zhejiang Engineering Survey and Design Institute Group Co., LTD., Ningbo, Zhejiang 315012, China)
关键词:
火后泥石流 地层岩性 岩土组合 火烧迹地 成灾机制
Keywords:
post-fire debris flow bedrock type rock-soil combination burned area disaster mechanism
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000843
文献标志码:
A
摘要:
森林火灾后留下的火烧迹地,在降雨条件下多发火后泥石流。林火燃烧破坏植被、改变土壤结构和土壤物理性质,使得火烧迹地的土壤层容重、孔隙率和渗透性等发生显著变化,造成火后泥石流成灾机制与普通泥石流有显著不同。此外,不同地层岩性区域(以灰色千枚岩、浅色花岗岩、红层泥岩为代表)的火烧迹地在火后泥石流的启动模式、灾害演变过程、动力学特性以及泥石流的规模上均表现出较大差异。本文对不同岩性区域的火后泥石流沟道开展野外调查和采样分析,探讨火烧迹地母岩、坡表风化坡残积土、植物根系以及不同影响深度对土壤物理力学性质和渗透特性的影响,揭示不同岩性区域火后泥石流的成灾机理和规模差异的原因。研究发现:(1)火后泥石流呈现出高重度、大粘度的流体特征。(2)不同岩性区火后泥石流启动模式、成灾过程、动力学特性和冲出规模均表现出差异。不同岩性区域的首次火后泥石流物源补给主要来源于坡面灰烬泥沙; 在后续补给过程中,变质岩区域主要表现为沟道下切和侧蚀滑坡补给; 火成岩区域主要为沟道下切揭底侵蚀补给; 而沉积岩区域则以沟道物源的铲刮裹挟和渐进夹带为特征。本研究可为中国山区火后泥石流防治提供科学依据。
Abstract:
Post-fire debris flows are common in areas after wildfires under rainfall conditions. Wildfires destroy vegetation, alter soil structure, and change soil physical properties, leading to significant changes in soil bulk density, porosity, and permeability in the burned areas. These changes result in a distinct mechanism of debris flow formation compared to ordinary debris flows. Moreover, burned areas in different rock formation regions(represented by gray phyllite, light-colored granite, and red mudstone)exhibit considerable differences in the initiation mode, disaster evolution process, dynamic characteristics, and scale of post-fire debris flows.
In this study, it conducted field investigations and sampling analyses at debris flow channels in different rock formation areas to explore the physical and mechanical properties, as well as the permeability of the parent rock in the burned areas, weathered colluvial soil on slope surface, plant roots, and at different depths of influence. This study revealed the mechanism and the reasons for the scale differences of post-fire debris flows in different rock formation areas.
(1)Post-fire debris flows exhibited characteristics of high density and large viscosity fluids.
(2)There were differences in the initiation modes, disaster processes, dynamic characteristics, and runout scales of post-fire debris flows in different lithological regions. The primary source of material replenishment for the first surge of post-fire debris flow in different lithological regions mainly comed from ash and sediment on slope surfaces; during subsequent replenishment processes, metamorphic rock regions were characterized by channel undercutting and lateral erosion-induced landslides; igneous rock regions were primarily supplied by channel undercutting and bedrock erosion; and sedimentary rock regions were characterized by scraping and gradual entrainment of channel-derived materials.
This research provides a scientific basis for prevention and control of post-fire debris flows in mountainous areas of China.

参考文献/References:

[1] FURDYCHKO O, DREBOT O, PALIANYCHKO N, et al. On the way to balance of forestry land use of ukraine: Ecological-and-economic aspect [J]. Agricultural and Resource Economics-International Scientific E-Journal, 2021, 7(4): 218-244. DOI: 10.22004/ag.econ.316829
[2] 胡卸文, 王严, 杨瀛. 火后泥石流成灾特点及研究现状[J]. 工程地质学报, 2018, 26(6): 1562-1573. [HU Xiewen, WANG Yan, YANG Ying. Research actuality and evolution mechanism of post-fire debris flow [J]. Journal of Engineering Geology, 2018, 26(6): 1562-1573] DOI: 10.13544/j.cnki.jeg.2018-073
[3] CANNON S H. Debris-flow generation from recently burned watersheds [J]. Environmental & Engineering Geoscience, 2001, 7(4): 321-341. DOI: 10.2113/gseegeosci.7.4.321
[4] NYMAN P, SMITH H G, SHERWIN C B, et al. Predicting sediment delivery from debris flows after wildfire [J]. Geomorphology, 2015, 250: 173-186. DOI: 10.1016/j.geomorph.2015.08.023
[5] 胡卸文, 金涛, 殷万清, 等. 西昌市经久乡森林火灾火烧区特点及火后泥石流易发性评价[J]. 工程地质学报, 2020, 28(4): 762-771. [HU Xiewen, JIN Tao, YIN Wanqing, et al. The characteristics of forest fire burned area and susceptibility assessment of post-fire debris flow in Jingjiu Township, Xichang City [J]. Journal of Engineering Geology, 2020, 28(4): 762-771] DOI: 10.13544/j.cnki.jeg.2020-224
[6] JIN Tao, HU Xiewen, LIU Bo, et al. Susceptibility prediction of post-fire debris flows in Xichang, China, using a logistic regression model from a spatiotemporal perspective [J]. Remote Sensing, 2022, 14(6): 1306. DOI: 10.3390/rs14061306
[7] WANG Yan, HU Xiewen, WU Lijun, et al. Evolutionary history of post-fire debris flows in Ren'e Yong valley in Sichuan Province of China [J]. Landslides, 2022, 19(6): 1479-1490. DOI: 10.1007/s10346-022-01867-x
[8] LANE P N J, SHERIDAN G J, NOSKE P J. Changes in sediment loads and discharge from small mountain catchments following wildfire in south eastern Australia [J]. Journal of Hydrology(Amsterdam), 2006, 331(3-4): 495-510. DOI: 10.1016/j.jhydrol.2006.05.035
[9] SMITH H G, SHERIDAN G J, NYMAN P, et al. Quantifying sources of fine sediment supplied to post-fire debris flows using fallout radionuclide tracers [J]. Geomorphology, 2012, 139-140: 403-415. DOI: 10.1016/j.geomorph.2011.11.005
[10] DEGRAFF J V, CANNON S H, GARTNER J E. The timing of susceptibility to post-fire debris flows in the western United States [J]. Environmental & Engineering Geoscience, 2015, 21(4): 277-292. DOI: 10.2113/gseegeosci.21.4.277
[11] COE J A, CANNON S H, SANTI P M. Introduction to the special issue on debris flows initiated by runoff, erosion, and sediment entrainment in western North America [J]. Geomorphology, 2008, 96(3-4): 247-249. DOI: 10.1016/J.GEOMORPH.2007.05.001
[12] CANNON S H, GARTNER J E. Wildfire-related debris flow from a hazards perspective [G] // JAKOB M, HUNGER O. Debris flow hazards and related phenomena. Berlin: Springer-Praxis, 2005: 363-385. DOI: 10.1007/3-540-27129-5_15
[13] PARISE M, CANNON S H. Wildfire impacts on the processes that generate debris flows in burned watersheds [J]. Natural Hazards, 2012, 61(1): 217-227. DOI: 10.1007/s11069-011-9769-9
[14] CANNON S H, GARTNER J E, HOLLAND-SEARS A, et al. Debris-flow response of basins burned by the 2002 Coal Seam and Missionary Ridge fires, Colorado [J]. Engineering Geology in Colorado-Contributions, Trends, and Case Histories: Association of Engineering Geologists Special Publication, 2003, 14: 1-31.
[15] GUO Xiaojun, CUI Peng, LI Yong, et al. Intensity-duration threshold of rainfall-triggered debris flows in the Wenchuan Earthquake affected area, China [J]. Geomorphology, 2016, 253: 208-216. DOI: 10.1016/j.geomorph.2015.10.009
[16] CANNON S H, GARTNER J E, WILSON R C, et al. Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California [J]. Geomorphology, 2008, 96(3-4): 250-269. DOI: 10.1016/j.geomorph.2007.03.019
[17] STALEY D M, KEAN J W, CANNON S H, et al. Objective definition of rainfall intensity-duration thresholds for the initiation of post-fire debris flows in southern California [J]. Landslides, 2012, 10(5): 547-562. DOI: 10.1007/s10346-012-0341-9
[18] OTT R F. How lithology impacts global topography, vegetation, and animal biodiversity: A global - scale analysis of mountainous regions [J]. Geophysical Research Letters, 2020, 47(20): e2020GL088649. DOI: 10.1029/2020GL088649
[19] 杨瀛, 胡卸文, 王严, 等. 八角楼乡火后泥石流空间发育特征[J]. 西南交通大学学报, 2021, 56(4): 818-827. [YANG Ying, HU Xiewen, WANG Yan, et al. Spatial development characteristics of post-fire debris flow in Bajiaolou Town [J]. Journal of Southwest Jiaotong University, 2021, 56(4): 818-827] DOI: 10.3969/j.issn.0258-2724.20200015
[20] 侯羿腾. 仁额拥沟火后泥石流物源特征及滑坡物源启动机理研究[D]. 成都: 西南交通大学, 2019: 1-71. [HOU Yiteng. Study on source characteristics and start-up mechanism of shallow landslide in Reneyong post-fire debris flow [D]. Chengdu: Southwest Jiaotong University, 2019: 1-71] DOI: 10.27414/d.cnki.gxnju.2019.000153
[21] 孙梦宇. 断裂带构造损伤岩体对泥石流物源形成影响研究[D]. 成都: 成都理工大学, 2020: 1-79. [SUN Mengyu. Research on the influence of structural damage rock on the formation of debris flow: Taking Anninghe fault zone as an example [D]. Chengdu: Chengdu University of Technology, 2020: 1-79] DOI: 10.26986/d.cnki.gcdlc.2020.000768
[22] 陈少轩. 考虑风化效应的四川盆地红层岩石力学特性试验研究[D]. 成都: 西南交通大学, 2022: 1-99. [CHEN Shaoxuan. Experimental study on mechanical properties of red-bedded rocks in Sichuan Basin considering weathering effects [D]. Chengdu: Southwest Jiaotong University, 2022: 1-99] DOI: 10.27414/d.cnki.gxnju.2022.001627
[23] SANTI P, MORANDI L. Comparison of debris-flow volumes from burned and unburned areas [J]. Landslides, 2013, 10: 757-769. DOI: 10.1007/s10346-012-0354-4
[24] 李娅芸, 刘雷, 安韶山, 等. 应用Le Bissonnais法研究黄土丘陵区不同植被区及坡向对土壤团聚体稳定性和可蚀性的影响[J]. 自然资源学报, 2016, 31(2): 287-298. [LI Yayun, LIU Lei, AN Shaoshan, et al. Research on the effect of vegetation and slope aspect on the stability and erodibility of soil aggregate in loess hilly region based on Le Bissonnais method [J]. Journal of Natural Resources, 2016, 31(2): 287-298] DOI: 10.11849/zrzyxb.20141207
[25] WILLIAMS J R, ARNOLD J G. A system of erosion-sediment yield models [J]. Soil Technology, 1997, 11(1): 43-55. DOI: 10.1016/s0933-3630(96)00114-6
[26] 胡卸文, 侯羿腾, 王严, 等. 火烧迹地土壤根系特征及其对抗剪强度的影响[J]. 水文地质工程地质, 2019, 46(5): 106-112. [HU Xiewen, HOU Yiteng, WANG Yan, et al. Root characteristics and its influences on shear strength in burned areas [J]. Hydrogeology & Engineering Geology, 2019, 46(5): 106-112] DOI: 10.16030/j.cnki.issn.1000-3665.2019.05.14
[27] CANNON S H, KIRKHAM R M, PARISE M. Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado [J]. Geomorphology, 2001, 39(3-4): 171-188. DOI: 10.1016/s0169-555x(00)00108-2
[28] 王严, 胡卸文, 金涛, 等. 火后泥石流形成过程的物源启动模式研究[J]. 工程地质学报, 2019, 27(6): 1415-1423. [WANG Yan, HU Xiewen, JIN Tao, et al. Material initiation of debris flow generation processes after hillside fires [J]. Journal of Engineering Geology, 2019, 27(6): 1415-1423] DOI: 10.13544/j.cnki.jeg.2019-197

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 03- 05; 改回日期(Accepted data):2024- 08-12
基金项目(Foundation item): 国家自然科学基金(42377170); [National Natural Science Foundation of China(42377170)]
作者简介(Biography): 胡卸文(1963-),男,浙江金华人,博士,教授,主要研究方向:工程地质、环境地质。[HU Xiewen(1963-), male, born in Jinhua, Zhejiang province, Ph.D., professor, research on engineering geology and environmental geology] E-mail:huxiewen@163.com
更新日期/Last Update: 2024-07-30