[1]梁红丽,赵梅珠.云南一次秋季极端暴雨过程的天气学分析[J].山地学报,2024,(4):557-575.[doi:10.16089/j.cnki.1008-2786.000845]
 LIANG Hongli,ZHAO Meizhu.Synoptic Analysis of an Extreme Autumn Rainstorm Process in Yunnan, China[J].Mountain Research,2024,(4):557-575.[doi:10.16089/j.cnki.1008-2786.000845]
点击复制

云南一次秋季极端暴雨过程的天气学分析
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第4期
页码:
557-575
栏目:
山地灾害
出版日期:
2024-07-25

文章信息/Info

Title:
Synoptic Analysis of an Extreme Autumn Rainstorm Process in Yunnan, China
文章编号:
1008-2786-(2024)4-557-19
作者:
梁红丽赵梅珠
(云南省气象台,昆明 650034)
Author(s):
LIANG HongliZHAO Meizhu
(Yunnan Meteorological Station, Kunming 650034, China)
关键词:
极端降雨 孟加拉湾低压 锋区和切变活动 地形作用 云南
Keywords:
extreme rainfall Bay of Bengal Low activity within front zone and shear line topographic climate effect Yunnan
分类号:
P448
DOI:
10.16089/j.cnki.1008-2786.000845
文献标志码:
A
摘要:
全球多个区域的降水模式正逐渐向极端化演变。受东亚和南亚季风交汇影响,加之山地地形复杂,中国云南极端降水分布在时空上具有高度不均匀性,降水演变在不同区域具有差异性。前期云南极端降水的研究多关注极端暴雨发生的大尺度背景及影响系统,对其精细演变特征及其成因差异的探讨则相对不足。本研究利用逐小时区域自动站雨量观测资料、高空间分辨率的ERA-Interim再分析资料,以2015年10月9日云南一次强暴雨过程为研究对象,对其极端降水天气过程特点、系统演变及低层水汽辐合、锋区和切变活动特征、地形作用等进行诊断分析,探讨不同阶段、不同区域极端暴雨演变成因差异。结果表明:(1)2015年10月9日极端暴雨是孟加拉湾低压与冷锋切变相互作用的结果。水汽输送主体是孟加拉湾西南急流,其次是中南半岛偏南气流。切变西段水汽强烈辐合达-3.0×10-7 g?cm-2? hPa-1?s-1,锋区西段经向梯度-21×10-5 K?m-1,东西风交界面稳定维持在99°E~100.5°E,南北风在25°N~26°N。与2000年以来影响系统相似度第2的2015年1月9日暴雨过程相比,此次极端降雨低层水汽输送及辐合强度、暖湿空气及锋区强度均明显偏强,东西风及南北风对峙时间更长。(2)极端暴雨为西北—东南走向的移动型雨带、影响范围广。雨带较长时间维持,是切变线西段冷暖气流强烈辐合、西南急流向滇西南的水汽输送加剧、影响滇南的西南和偏南气流汇合作用增强而形成的,在强降水初期、发展、维持阶段各个因素的作用又有差异。(3)不同阶段、不同区域大暴雨中心降水演变的成因也有很大差异,是低层经纬向风辐合、锋区辐合上升、地形对经纬向气流的强迫抬升、低层水汽辐合等多种因素相互作用的结果。研究结果可为提升云南地区极端降水事件的预报能力和防灾减灾工作提供科学依据。
Abstract:
Precipitation patterns in several regions of the globe are progressively evolving towards extremes. Governed by the convergence of East Asian monsoons and South Asian monsoons, as well as locally modulated by complex mountainous terrain in the Yun-Gui Plateau, extreme precipitation in Yunnan, China, exhibits high spat-temporal heterogeneity, with great differences in precipitation evolution across different regions. In previous research on extreme precipitation in Yunnan, meteorologists had paid more attention to extreme rainstorms in the context of large-scale with associated influence system, hardly explored the fine evolution patterns and their causal differences.
This study employed hourly field observation data from regional automatic meteorological stations and high-resolution ERA-Interim(gridded at 0.125°×0.125° and a temporal resolution of 6 hours interval)reanalysis data to meticulously analyze a historic heavy rainstorm event occurred in Yunnan, China, on October 9, 2015. This event etched in history as the most severe and far-reaching episode of extreme precipitation in Yunnan since records began in 1951. It conducted a diagnostic analysis of the intricate dynamics of extreme precipitation weather process, meteorological system evolution, the convergence of lower tropospheric moisture, the activities within front zones and shear lines, and topographic climate effect, to elucidate the differences in the causes of extreme rainstorm evolution at different stages and in different regions.
(1)The extreme rainstorm on October 9, 2015 was the result of the interaction between Bay of Bengal Low and cold front shear. The main body of water vapor transport was the southwest jet stream of Bay of Bengal, followed by the southerly airflow from Indochina Peninsula. The strong convergence of low-level water vapor in the western part of the cold front shear reached -3.0×10-7 g·cm-2· hPa-1·s-1; the meridional gradient in the western section of the frontal zone was -21×10-5 K·m-1; the interface of east-west wind was stably maintained at 99°E-100.5°E, and the north-south wind was confronted at 25°N-26°N.
Compared with the January 9, 2015 rainstorm process, which was the 2nd most similar influence system since 2000, the intensity of low-level water vapor transport and convergence, the intensity of warm moist air and the frontal zone of this extreme rainfall were significantly stronger, and the east-west winds and north-south winds confronted each other for a longer period of time.
(2)Extreme rainstorms were moving rainy zone with a northwest-southeast orientation and a wide range of impacts. The rain zone was maintained for a longer period of time, which was formed by the strong convergence of cold and warm airflow in the western section of the shear, the intensification of water vapor transport from the southwestern jet to southwestern Yunnan, and the enhancement of the confluence of southwestern and southerly airflow affecting southern Yunnan. The role of each factor in the initial, developmental, and maintenance phases of heavy precipitation varied.
(3)The causes of precipitation evolution in heavy rainstorm centers at different stages and different regions were also very different. It was the result of interaction of many factors, such as the convergence of low-level meridional and zonal winds, the rise of frontal convergence, the forced uplift of meridional and zonal airflow by topography, and the convergence of low-level water vapor.
This study provides a scientific basis for improving the forecasting capability of extreme precipitation events and disaster prevention and mitigation in Yunnan.

参考文献/References:

[1] GROISMAN P Y, KARL T R, EASTERLING D R, et al. Changes in the probability of heavy precipitation: Important indicators of climatic change [J]. Climatic Change, 1999, 43(1): 243-283. DOI: 10.1023/A: 1005432803188
[2] GUHATHAKURTA P, SREEJITH O P, MENON P A. Impact of climate change on extreme rainfall events and flood risk in India [J]. Journal of Earth System Science, 2011, 120(3): 359-373. DOI: 10.1007/s12040-011-0082-5
[3] ZHU Jianting. Impact of climate change on extreme rainfall across the United States [J]. Journal of Hydrologic Engineering, 2013, 18(10): 1301-1305. DOI: 10.1061/(ASCE)HE.1943-5584.0000725
[4] LEHMANN J, COUMOU D, FRIELER K. Increased record-breaking precipitation events under global warming [J]. Climatic Change, 2015, 132(4): 501-515. DOI: 10.1007/s10584-015-14434-y
[5] 牛若芸, 刘凑华, 刘为一, 等. 1981—2015年中国95°E以东区域性暴雨过程时空分布特征[J]. 气象学报, 2018, 76(2): 182-195. [NIU Ruoyun, LIU Couhua, LIU Weiyi, et al. Characteristics of temporal and spatial distribution of regional rainstorm processes to the east of 95°E in China during 1981-2015 [J]. Acta Meteorologica Sinica, 2018, 76(2): 182-195] DOI: 10.11676/qxxb2017.092
[6] 钟敏, 车钦, 张蒙蒙, 等. 华中区域极端降水天气形势及物理量异常度特征[J]. 气象, 2020, 46(4): 503-516. [ZHONG Min, CHE Qin, ZHANG Mengmeng, et al. Characteristics of extreme precipitation weather situation and physical quantity anomaly in central China [J]. Meteorological Monthly, 2020, 46(4): 503-516] DOI: 10.7519/j.issn.1000-0526.2020.04.005
[7] 陈红专. 湖南极端降水的气候特征及天气系统分型研究[J]. 气象, 2021, 47(10): 1219-1232. [CHEN Hongzhuan. Climatic characteristics and weather system classification of extreme precipitation in Hunan Province [J]. Meteorological Monthly, 2021, 47(10): 1219-1232] DOI: 10.7519/j.issn.1000-0526.2021.10.005
[8] 许美玲, 段旭, 杞明辉, 等. 云南省天气预报员手册[M]. 北京: 气象出版社, 2011: 97-100. [XU Meiling, DUAN Xu, QI Minghui, et al. Yunnan Provincial weather forecaster manual [M]. Beijing: Meteorological Press, 2011: 97-100]
[9] 张素凡, 王龙, 余航, 等. 云南省日极端降水概率特征及时空变化研究[J]. 灌溉排水学报, 2017, 36(5): 11-16. [ZHANG Sufan, WANG Long, YU Hang, et al. Statistical analysis and spatio-temporal variation of extreme rainfalls in Yunnan Province [J]. Journal of Irrigation and Drainage, 2017, 36(5): 11-16] DOI: 10.13522/j.cnki.ggps.2017.05.003
[10] 杨晓静, 徐宗学, 左德鹏, 等. 云南省1958—2013年极端降水时空变化特征分析[J]. 灾害学, 2015, 30(4): 178-186. [YANG Xiaojing, XU Zongxue, ZUO Depeng, et al. Spatiotemporal characteristics of extreme precipitation in Yunnan Province from 1958-2013 [J]. Journal of Catastrophology, 2015, 30(4): 178-186] DOI: 10.3969/j.issn.1000-811X.2015.04.032
[11] 覃顺萍, 吴巩胜, 李丽, 等. 1961—2010年云南省极端降水时空变化特征[J]. 云南师范大学学报(自然科学版), 2015, 35(1): 67-72. [QIN Shunping, WU Gongsheng, LI Li, et al. Temporal-spatial variations of extreme precipitation events from 1961 to 2010 in Yunnan Province [J]. Journal of Yunnan Normal University, 2015, 35(1): 67-72] DOI: 10.7699/j.ynnu.ns-2015-012
[12] 刘丽, 陶云. 云南省汛期极端强降水事件的气候特征[J]. 干旱气象, 2012, 30(1): 15-20. [LIU Li, TAO Yun. Climatic characteristics of extremely heavy precipitation events in flood season in Yunnan Province [J]. Journal of Arid Meteorology, 2012, 30(1): 15-20]
[13] 邹璐, 肖国杰, 黎跃浩, 等. 近54年云南西北地区极端降水频数和强度特征[J]. 成都信息工程大学学报, 2016, 31(5): 531-536. [ZOU Lu, XIAO Guojie, LI Yuehao, et al. Analysis on the frequency and intensity of extreme precipitation in the northwest Yunnan during last 54 years [J]. Journal of Chengdu University of Information Technology, 2016, 31(5): 531-536] DOI: 10.16836/j.cnki.jcuit.2016.05.016
[14] 李耀孙, 原韦华, 孙绩华, 等. 云南雨季和干季小时降水的时空特征分析[J]. 高原山地气象研究, 2021, 41(3): 24-32. [LI Yaosun, YUAN Weihua, SUN Jihua, et al. Temporal and spatial distribution of hourly precipitation in rainy and dry seasons over Yunnan Province [J]. Plateau and Mountain Meteorology Research, 2021, 41(3): 24-32] DOI: 10.3969/j.issn.1674-2184.2021.03.004
[15] 苏锦兰, 张万诚, 宋金梅, 等. 云南小时降水的时空分布变化研究[J]. 气象, 2021, 47(2): 133-142. [SU Jinlan, ZHANG Wancheng, SONG Jinmei, et al. Study on spatio-temporal distribution of hourly precipitation in Yunnan Province [J]. Meteorological Monthly, 2021, 47(2): 133-142] DOI: 10.7519/j.issn.1000-0526.2021.02.001
[16] 梁红丽, 许美玲, 吕爱民, 等. 孟加拉湾风暴引发云南初夏强降水初探[J]. 高原气象, 2014, 33(5): 1240-1250. [LIANG Hongli, XU Meiling, LYU Aimin, et al. Preliminary study on heavy rainfall in Yunnan in early summer initiated by Bengal Bay storm [J]. Plateau Meteorology, 2014, 33(5): 1240-1250] DOI: 10.7522/j.issn.1000-0534.2013.00076
[17] 梁红丽, 程正泉. 2014年两次相似路径影响云南台风降水差异成因分析[J]. 气象, 2017, 43(11): 1339-1353. [LIANG Hongli, CHENG Zhengquan. Cause analysis of precipitation difference between two typhoons influencing Yunnan along similar tracks in 2014 [J]. Meteorological Monthly, 2017, 43(11): 1339-1353] DOI: 10.7519/j.issn.1000-0526.2017.11.003
[18] 陶诗言. 中国之暴雨[M]. 北京: 科学出版社, 1980: 41-43. [TAO Shiyan, et al. Rainstorm in China [M]. Beijing: Science Press, 1980: 41-43]
[19] 何华, 孙绩华. 云南冷锋切变大暴雨过程的环流及水汽输送特征[J]. 气象, 2003, 29(4): 48-52. [HE Hua, SUN Jihua. Circulation and moisture flux characteristics at middle and lower levels during heavy rains in Yunnan [J]. Meteorological Monthly, 2003, 29(4): 48-52]
[20] 周建琴, 晏红明, 郑建萌, 等. 2010年9—10月云南连阴雨发生的事实和成因分析[J]. 高原气象, 2014, 33(1): 106-115. [ZHOU Jianqin, YAN Hongming, ZHENG Jianmeng, et al. Fact and cause analyses on Autumn continuous rain in 2010 in Yunnan Province [J]. Plateau Meteorology, 2014, 33(1): 106-115] DOI: 10.7522/j.issn.1000-0534.2012.00169
[21] 许美玲, 梁红丽, 段旭, 等. 秋季孟加拉湾风暴影响云南降水差异的对比分析[J]. 高原气象, 2014, 33(5): 1229-1239. [XU Meiling, LIANG Hongli, DUAN Xu, et al. Comparative analysis of precipitation difference over Yunnan influenced by Bengal Bay storm in Autumn [J]. Plateau Meteorology, 2014, 33(5): 1229-1239] DOI: 10.7522/j.issn.1000-0534.2013.00123
[22] 张秀年, 段旭. 云南冷锋切变型暴雨的中尺度特征分析[J]. 南京气象学院学报, 2006, 29(1): 114-121. [ZHANG Xiunian, DUAN Xu. Study on a rainstorm and it's mesoscale characters caused by cold front shear in Yunnan [J]. Journal of Nanjing Institute of Meteorology, 2006, 29(1): 114-121] DOI: 10.13878/j.cnki.dqkxxb.2006.01.017
[23] 金少华, 葛晓芳, 艾永智, 等. 低纬高原两次冷锋切变天气对比分析[J]. 气象, 2010, 36(6): 35-42. [JIN Shaohua, GE Xiaofang, AI Yongzhi, et al. A comparison between two cold front shear processes over lower latitude plateau of China [J]. Meteorological Monthly, 2010, 36(6): 35-42]
[24] 周泓, 杨若文, 钟爱华, 等. 云南省一次切变冷锋型暴雨过程的中尺度对流系统分析[J]. 气象, 2015, 41(8): 953-963. [ZHOU Hong, YANG Ruowen, ZHONG Aihua, et al. Analysis on mesoscale convective system during a shear and cold front type rainstorm process in Yunnan Province [J]. Meteorological Monthly, 2015, 41(8): 953-963] DOI: 10.7519/j.issn.1000-0526.2015.08.004
[25] 鲁亚斌, 唐盛, 闵颖, 等. 孟加拉湾低压与昆明准静止锋影响下云南极端暴雨过程分析[J]. 气象科技进展, 2019, 9(5): 24-31. [LU Yabin, TANG Sheng, MIN Ying, et al. The analysis of extreme rainstorm process as influenced by the Bay of Bengal low and Kunming quasi-stationary front in Yunnan [J]. Advances in Meteorological Science and Technology, 2019, 9(5): 24-31] DOI: 10.3969/j.issn.2095-1973.2019.05.003
[26] 段旭, 段玮, 王曼, 等. 昆明准静止锋[M]. 北京: 气象出版社, 2017: 259-265. [DUAN Xu, DUAN Wei, WANG Man, et al. Kunming quasi-stationary front [M]. Beijing: Meteorological Press, 2017: 259-265]
[27] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system [J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553-597. DOI: 10.1002/qj.828
[28] 何冬燕, 田红, 邓伟涛. 三种再分析地表温度资料在青藏高原区域的适用性分析[J]. 大气科学学报, 2013, 36(4): 458-465. [HE Dongyan, TIAN Hong, DENG Weitao. Applicability analysis of three reanalysis surface temperature data over the Tibetan Plateau [J]. Transactions of Atmospheric Sciences, 2013, 36(4): 458-465] DOI: 10.13878/j.cnki.dqkxxb.2013.04.009
[29] 林志强. 1979—2013年ERA-Interim资料的青藏高原低涡活动特征分析[J]. 气象学报, 2015, 73(5): 925-939. [LIN Zhiqiang. An objective analysis of the Tibetan Plateau vortexes based on the ERA-interim reanalysis data: 1979-2013 [J]. Acta Meteorologica Sinica, 2015, 73(5): 925-939] DOI: 10.11676/qxxb2015.066
[30] WU C C, YEN T H, KUO Y H, et al. Rainfall simulation associated with typhoon Herb(1996)near Taiwan. PartⅠ: The topographic effect [J]. Weather and Forecasting, 2002, 17(5): 1001–1015. DOI: 10.1175/1520-0434(2003)0172.0.CO; 2
[31] 吕爱民, 文永仁, 李英. 一次孟加拉湾风暴Akash(0701)对我国西南地区强降水过程的影响分析[J]. 大气科学, 2013, 37(1): 160-170. [LYU Aimin, WEN Yongren, LI Ying. Study of the impact of tropical cyclone Akash(0701)over the Bay of Bengal on a heavy rainfall event in southwest China [J]. Chinese Journal of Atmospheric Sciences, 2013, 37(1): 160-170] DOI: 10.3878/j.issn.1006-9895.2012.12040
[32] 段旭, 陶云, 寸灿琼, 等. 孟加拉湾风暴时空分布和活动规律统计特征[J]. 高原气象, 2009, 28(3): 634-640. [DUAN Xu, TAO Yun, CUN Canqiong, et al. Temporal and spatial distributions of storms over the Bay of Bengal and its activity characteristic [J]. Plateau Meteorology, 2009, 28(3): 634-640]
[33] 董海萍, 赵思雄, 曾庆存. 低纬高原地形对强降水过程影响的数值试验研究[J]. 气候与环境研究, 2007, 12(3): 381-395. [DONG Haiping, ZHAO Sixiong, ZENG Qingcun. A numerical simulation of topography on heavy rainfall in lower latitude plateau [J]. Climatic and Environmental Research, 2007, 12(3): 381-395] DOI: 10.3878/j.issn.1006-9585.2007.03.20
[34] 梁红丽, 祁文, 陈艳, 等. 一次极端降水过程中不同相态降水过程的锋生特征对比研究[J]. 自然灾害学报, 2018, 27(2): 149-160. [LIANG Hongli, QI Wen, CHEN Yan. A comparative study on frontogenesis characteristics in different phase during an extreme precipitation process [J]. Journal of Natural Disasters, 2018, 27(2): 149-160] DOI: 10.13577/j.jnd.2018.0218

相似文献/References:

[1]谭红梅,贺中华*,陈莉会,等.贵州省极端降雨特征及其影响因子[J].山地学报,2023,(5):748.[doi:10.16089/j.cnki.1008-2786.000784]
 TAN Hongmei,HE Zhonghua,*,et al.Characteristics of Extreme Rainfall and Its Influencing Factors in Guizhou Province, China[J].Mountain Research,2023,(4):748.[doi:10.16089/j.cnki.1008-2786.000784]
[2]王鑫盈a,马 超a,b,等.浅层黄土滑坡易发性评价:以晋西黄土区蔡家川农地小流域为例[J].山地学报,2023,(6):904.[doi:10.16089/j.cnki.1008-2786.000796]
 WANG Xinyinga,MA Chaoa,b,et al.Risk Assessment of Shallow Loess Landslides: Taking a Small Watershed of Caijiachuan Farmland in the Loess Region of Western Shanxi of China as an Example[J].Mountain Research,2023,(4):904.[doi:10.16089/j.cnki.1008-2786.000796]

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 01- 08; 改回日期(Accepted date):2024- 08-15
基金项目(Foundation item): 国家自然科学基金(42365001)。[National Natural Science Foundation of China(42365001)]
作者简介(Biography): 梁红丽(1973-),女,云南曲靖人,硕士,正高级工程师,主要研究方向:灾害性天气机理。[LIANG Hongli(1973-), female, born in Qujing, Yunnan province, M.Sc., professor of engineering, research on the mechanism of disastrous weather] E-mail: lhl1678@163.com
更新日期/Last Update: 2024-07-30