[1]王鹏程,罗永红*,刘红枫,等.“9·5”四川泸定Ms6.8级地震诱发磨西台地地震响应分析[J].山地学报,2024,(4):576-590.[doi:10.16089/j.cnki.1008-2786.000846]
 WANG Pengcheng,LUO Yonghong*,LIU Hongfeng,et al.Seismic Response of Moxi Terrace Induced by the Ms6.8 Luding Earthquake on September 5th, 2022, in Luding County, Sichuan, China[J].Mountain Research,2024,(4):576-590.[doi:10.16089/j.cnki.1008-2786.000846]
点击复制

“9·5”四川泸定Ms6.8级地震诱发磨西台地地震响应分析
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第4期
页码:
576-590
栏目:
研究简报
出版日期:
2024-07-25

文章信息/Info

Title:
Seismic Response of Moxi Terrace Induced by the Ms6.8 Luding Earthquake on September 5th, 2022, in Luding County, Sichuan, China
文章编号:
1008-2786-(2024)4-576-15
作者:
王鹏程罗永红*刘红枫景俊杰
(成都理工大学 地质灾害防治与地质环境保护国家重点实验室,成都 610059)
Author(s):
WANG Pengcheng LUO Yonghong* LIU Hongfeng JING Junjie
(State Key Laboratory of Geological Hazard Prevention and Control and Geological Environmental Protection, Chengdu University of Technology, Chengdu 610059, China)
关键词:
泸定地震 磨西冰水台地 环境噪声 H/V谱比 地形放大效应
Keywords:
Luding Earthquake Moxi Terrace ambient noise H/V spectral ratio topographic amplification effect
分类号:
P694
DOI:
10.16089/j.cnki.1008-2786.000846
文献标志码:
A
摘要:
2022年9月5日泸定县磨西发生Ms6.8强烈地震,震中距离磨西镇约7 km,此次强震导致磨西台地边缘产生了大量浅表滑坡灾害。本文通过调查、无人机测量、环境噪声测试及地形多谱放大分析(Simulator for mapped seismic response using a hybrid model, SiSeRHMap)等,对磨西台地地震效应进行研究。调查表明:(1)台地边缘发育同震滑坡90处,集中在台地东、西两侧边缘,以浅表层小型滑塌为主,破坏深度2~5 m,地形坡度多在50°以上。(2)33处环境噪声水平与竖向谱比(H/V)分析揭示,场地卓越频率以1~4 Hz低频为主,谱比放大系数随着离台地边缘距离增加先增大后减小,离台地边缘距离小于20 m的范围场地大多具有方向效应,优势方向趋近垂直临空面走向。(3)综合地形放大计算分析表明,磨西台地边缘破坏与其场地地形共振效应密切相关,在台地东、西两侧的坡度越大、地形越凸出、土体越松软的区域场地地震响应越强烈,易破坏。本研究对磨西台地灾后重建及抗震设防具有重要应用价值及理论意义。
Abstract:
On September 5, 2022, a severe earthquake of Ms6.8 occurred in Luding county, China, with its epicenter approximately 7 km away from Moxi Town. This earthquake triggered numerous shallow landslides along the edges of Moxi Terrace, a glacial landform constituted by glacial till, alluvial and colluvial sediments, and remnants of ancient debris flows.
In this paper, the seismic effects on Moxi Terrace were investigated through surveys, unmanned aerial vehicle(UAV)measurements, ambient noise testing and multispectral topographic amplification analysis by SiSeRHMap methodology(simulator for mapped seismic response using a hybrid model).
(1)A total of 90 co-seismic landslides were identified along the edges of the Terrace, primarily developed on the eastern and western flanks, featuring small-scale shallow collapses with 2-5 meters in depths, and slopes exceeding 50°.
(2)By an examination of ambient noise levels and vertical-to-horizontal spectral ratios(H/V)at 33 sites on the Terrace, it found that the predominant frequencies of site were primarily low frequencies of 1-4 Hz. The amplification factor of H/V spectral ratio initially increased and then decreased with distance increasing from the Terrace edge. Most sites within 20 meters of the Terrace edge exhibited directional effects, with the dominant direction approaching to the perpendicular of the air face of the Terrace.
(3)By SiSeRHMap method, it suggested that the collapses occurred on the edges of Moxi Terrace were consistent with resonance effect of site terrain. In areas with steeper slopes, more prominent topography, and softer soil on the eastern and western flanks of the Terrace, the seismic responses were more intense and prone to failure.
This study has practical value and theoretical significance for post-disaster reconstruction and seismic fortification of Moxi Terrace.

参考文献/References:

[1] 黄润秋, 李为乐. “5.12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12): 2585-2592. [HUANG Runqiu, LI Weile. Research on the development and distribution rules of geological induced by the Wenchuan earthquake on 12th May, 2008 [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2585-2592] DOI: 10.3321/j.issn:1000-6915.2008.12.028
[2] 程强. 汶川强震区公路沿线地震崩滑灾害发育规律研究[J]. 岩石力学与工程学报, 2011, 30(9): 1747-1760. [CHENG Qiang. Research on development rules of seismic landslide and collapse along highways in highly seismic region of Wenchuan earthquake [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1747-1760]
[3] 李秀珍, 孔纪名, 崔云, 等. 芦山地震诱发次生地质灾害的分布规律和类型、特征及演化趋势分析[J]. 工程地质学报, 2014, 22(2): 272-279. [LI Xiuzhen, KONG Jiming, CUI Yun, et al. Analysis on distribution law, types and characteristics and development tendency of secondary geo-hazards induced by Lushan earthquake [J]. Journal of Engineering Geology, 2014, 22(2): 272-279] DOI: 10.3969/j.issn.1004-9665.2014.02.018
[4] 高会会, 裴向军, 崔圣华, 等. 汶川震区震后地质灾害发育分布及演化特征统计分析[J]. 长江科学院院报, 2019, 36(8): 73-80. [GAO Huihui, PEI Xiangjun, CUI Shenghua, et al. Geological hazards after earthquake in Wenchuan earthquake area: Distribution and evolvement features [J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 73-80] DOI: 10.11988/ckyyb.20180109
[5] 冉涛, 徐如阁, 李奇. 川藏交通廊道怒江段斜坡地质灾害发育特征及主控因素分析[J]. 自然灾害学报, 2024, 33(4): 176-187. [RAN Tao, XU Ruge, LI Qi. Development characteristics and main controlling factors of the slope geohazards in Nujiang River section of Sichuan-Xizang traffic corridor [J]. Journal of Natural Disasters, 2024, 33(4): 176-187] DOI: 10.13577/j.jnd.2024.0416
[6] 罗永红, 王运生. 汶川地震诱发山地斜坡震动的地形放大效应[J]. 山地学报, 2013, 31(2): 200-210. [LUO Yonghong, WANG Yunsheng. Mountain slope ground motion topography amplification effect induced by Wenchuan Earthquake [J]. Mountain Research, 2013, 31(2): 200-210] DOI: 10.16089/j.cnki.1008-2786.2013.02.012
[7] 李孝波, 常晁瑜, 蔡晓光, 等. 泸定磨西台地场地地震效应研究[J]. 防灾科技学院学报, 2022, 24(4): 34-45. [LI Xiaobo, CHANG Chaoyu, CAI Xiaoguang, et al. Site seismic effect of the Moxi platform in Luding, Sichuan [J]. Journal of Institute of Disaster Prevention, 2022, 24(4): 34-45] DOI: 10.3969/j.issn.1673-8047.2022.04.004
[8] 郑本兴. 贡嘎山东麓第四纪冰川作用与磨西台地成因探讨[J]. 冰川冻土, 2001, 23(3): 283-291. [ZHENG Benxing. Study on the quaternary glaciation and the formation of the Moxi platform in the east slopes of the Mount Gongga [J]. Journal of Glaciology and Geocryology, 2001, 23(3): 283-291] DOI: 10.3969/j.issn.1000-0240.2001.03.012
[9] 张佳佳, 陈龙, 李元灵, 等. 2022年9月5日泸定 Ms6.8地震的同震地质灾害发育特征及主控因素分析[J]. 地震学报, 2023, 45(2): 167-178. [ZHANG Jiajia, CHEN Long, LI Yuanling, et al. Development characteristics and controlling factors of co-seismic geo-hazards triggered by the Luding Ms6.8 earthquake on September 5, 2022[J]. Acta Seimologica Sinica, 2023, 45(2): 167-178] DOI: 10.11939/jass.20220215
[10] 范宣梅, 王欣, 戴岚欣, 等. 2022年Ms6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报, 2022, 30(5): 1504-1516. [FAN Xuanmei, WANG Xin, DAI Lanxin, et al. Characteristics and spatial distribution pattern of Ms6.8 Luding Earthquake occurred on September 5, 2022[J]. Journal of Engineering Geology, 2022, 30(5): 1504-1516] DOI: 10.13544/j.cnki.jeg.2022-0665
[11] VELLA A, GALEA P, D'AMICO S. Site frequency response characterisation of the Maltese islands based on ambient noise H/V ratios [J]. Engineering Geology, 2013, 163: 89-100. DOI: 10.1016/j.enggeo.2013.06.006
[12] YAMAZAKI F, ANSARY M A. Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization [J]. Earthquake Engineering and Structural Dynamics, 1997, 26(7): 671-689. DOI: 10.1002/(SICI)1096-9845(199707)26:7<671::AID-EQE669>3.0.CO; 2-S
[13] 黄俊阁, 罗永红, 王运生, 等. 基于环境噪声测试表征斜坡地震动响应: 以自贡西山斜坡为例[J]. 成都理工大学学报(自然科学版), 2020, 47(1): 16-27. [HUANG Junge, LUO Yonghong, WANG Yunsheng, et al. Characterization of slope ground motion response based on ambient noise test: A case study for the Xishan slope in Zigong [J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2020, 47(1): 16-27] DOI: 10.3969/j.issn.1671-9727.2020.01.02
[14] 卢滔, 周正华, 周雍年, 等. 关于Nakamura方法有效性的讨论[J]. 地震工程与工程振动, 2006, 26(1): 43-48. [LU Tao, ZHOU Zhenghua, ZHOU Yongnian, et al. Discussion on validation of Nakamura's technique [J]. Earthquake Engineering and Engineering Vibration, 2006, 26(1): 43-48] DOI: 10.3969/j.issn.1000-1301.2006.01.007,
[15] NAKAMURA Y. Basic structure of QTS(HVSR)and examples of applications [J]. Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data, 2009: 33-51. DOI: 10.1007/978-1-4020-9196-4_4
[16] WEN Ruizhi, REN Yefei, ZHOU Zhenghua, et al. Preliminary site classification of free-field strong motion stations based on Wenchuan earthquake records [J]. Earthquake Science, 2010, 23(1): 101-110. DOI: 10.1007/s11589-009-0048-8
[17] GUEGUEN P, CHATELAIN J L, GUILLIER B, et al. An indication of the soil topmost layer response in Quito(Ecuador)using noise H/V spectral ratio [J]. Soil Dynamics and Earthquake Engineering, 2000, 19(2): 127-133. DOI: 10.1016/S0267-7261(99)00035-4
[18] LUO Yonghong, DEL GAUDIO V, HUANG Runqiu, et al. Evidence of hillslope directional amplification from accelerometer recordings at Qiaozhuang(Sichuan — China)[J]. Engineering Geology, 2014, 183: 193-207. DOI: 10.1016/j.enggeo.2014.10.015
[19] LUO Yonghong, FAN Xuanmei, HUANG Runqiu, et al. Topographic and near-surface stratigraphic amplification of the seismic response of a mountain slope revealed by field monitoring and numerical simulations [J]. Engineering Geology, 2020, 271: 105607. DOI: 10.1016/j.enggeo.2020.105607
[20] DEL GAUDIO V, LUO Yonghong, WANG Yunsheng, et al. Using ambient noise to characterize seismic slope response: The case of Qiaozhuang peri-urban hillslopes(Sichuan, China)[J]. Engineering Geology, 2018, 246: 374-390. DOI: 10.1016/j.enggeo.2018.10.008
[21] 朱鑫, 罗永红, 南凯, 等. 环境噪声测试在滑坡体场地快速勘探中的应用——以赵家山滑坡为例[J]. 地球物理学进展, 2023, 38(6): 2778-2790. [ZHU Xin, LUO Yonghong, NAN Kai, et al. Application of environmental noise test in rapid exploration of landslide site: Take Zhaojiashan landslide as an example [J]. Progress in Geophysics, 2023, 38(6): 2778-2790] DOI: 10.6038/pg2023HH0056
[22] 吕国森, 章旭, 张云辉, 等. 川西鲜水河、安宁河和龙门山断裂带地热水的水文地球化学特征及成因模式的讨论[J]. 中国地质, 2024, 51(1): 341-359. [LYU Guosen, ZHANG Xu, ZHANG Yunhui, et al. Discussion on hydrogeochemical characteristics and genetic model of geothermal waters in Xianshuihe, Anninghe and Longmenshan fault zones in western Sichuan, China [J]. Geology in China, 2024, 51(1): 341-359] DOI: 10.12029/gc20230309001
[23] 王敏杰, 李天斌, 孟陆波, 等. 四川“Y字形”断裂交汇部应力场反演分析[J]. 铁道科学与工程学报, 2015, 12(5): 1088-1095. [WANG Minjie, LI Tianbin, MENG Lubo, et al. Back analysis of stress field in the intersection region of Y shaped fault, Sichuan [J]. Journal of Railway Science and Engineering, 2015, 12(5): 1088-1095] DOI: 10.19713/j.cnki.43-1423/u.2015.05.016
[24] 闻学泽, ALLEN C R, 罗灼礼, 等. 鲜水河全新世断裂带的分段性、几何特征及其地震构造意义[J]. 地震学报, 1989, 11(4): 362-372. [WEN Xueze, ALLEN C R, LUO Zhuoli, et al. Segmentation and geometric features, and their seismotectonic implications for the Holocene Xianshuihe fault zone [J]. Acta Seismologica Sinica, 1989, 11(4): 362-372]
[25] 潘家伟, 李海兵, CHEVALIER M L, 等. 鲜水河断裂带色拉哈—康定段新发现的活动断层: 木格措南断裂[J]. 地质学报, 2020, 94(11): 3178-3188. [PAN Jiawei, LI Haibing, CHEVALIER M L, et al. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault: The South Mugecuo fault [J]. Acta Geologica Sinica, 2020, 94(11): 3178-3188] DOI: 10.19762/j.cnki.dizhixuebao.2020196
[26] 李传友, 孙凯, 马骏, 等. 四川泸定6.8级地震——鲜水河断裂带磨西段局部发起、全段参与的一次复杂事件[J]. 地震地质, 2022, 44(6): 1648-1666. [LI Chuanyou, SUN Kai, MA Jun, et al. The 2022 Ms6.8 Luding earthquake: A complicated event by faulting of the Moxi segment of the Xianshuihe fault zone [J]. Seimology and Geology, 2022, 44(6): 1648-1666] DOI: 10.3969/j.issn.0253-4967.2022.06.017
[27] KONNO K, OHMACHI T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor [J]. Bulletin of the Seismological Society of America, 1998, 88(1): 228-241. DOI: 10.1029/98JB00054
[28] WATHELET M, JONGMANS D, OHRNBERGER M, et al. Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion [J]. Journal of Seismology, 2008, 12: 1-19. DOI: 10.1007/s10950-007-9067-x
[29] DEL GAUDIO V, COCCIA S, WASOWSKI J, et al. Detection of directivity in seismic site response from microtremor spectral analysis [J]. Natural Hazards and Earth System Sciences, 2008, 8(4): 751-762. DOI: 10.5194/nhess-8-751-2008
[30] DEL GAUDIO V, WASOWSKI J, MUSCILLO S. New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes [J]. Natural Hazards and Earth System Science, 2013, 13(8): 2075-2087. DOI: 10.5194/nhess-13-2075-2013
[31] DEL GAUDIO V, MUSCILLO S, WASOWSKI J. What we can learn about slope response to earthquakes from ambient noise analysis: An overview [J]. Engineering Geology, 2014, 182: 182-200. DOI: 10.1016/j.enggeo.2014.05.010
[32] GRELLE G, BONITO L, LAMPASI A, et al. SiSeRHMap v1.0: A simulator for mapped seismic response using a hybrid model [J]. Geoscientific Model Development, 2016, 9(4): 1567-1596. DOI: 10.5194/gmd-9-1567-2016
[33] GRELLE G, WOOD C, BONITO L, et al. A reliable computerized litho-morphometric model for development of 3D maps of Topographic Aggravation Factor(TAF): The cases of East Mountain(Utah, USA)and Port au Prince(Haiti)[J]. Bulletin of Earthquake Engineering, 2018, 16(5): 1725-1750. DOI: 10.1007/s10518-017-0272-x
[34] GRELLE G, GARGINI E, FACCIORUSSO J, et al. Seismic site effects in the Red Zone of Amatrice hill detected via the mutual sustainment of experimental and computational approaches [J]. Bulletin of Earthquake Engineering, 2020, 18(4): 1955-1984. DOI: 10.1007/s10518-019-00777-z
[35] LUO Yonghong, XU Qiang, ZHAN Weiwei, et al. Seismic hazard prediction using multispectral amplification maps in a complex topographic area: A case study of Qiaozhuang Town, Sichuan Province, southwest China [J]. Journal of Mountain Science, 2022, 19(3): 726-739. DOI: 10.1007/s11629-021-6837-9
[36] 许强, 李为乐. 汶川地震诱发滑坡方向效应研究[J]. 四川大学学报(工程科学版), 2010, 42(S1): 7-14. [XU Qiang, LI Weile. Study on the direction effects of landslides triggered by Wenchuan Earthquake [J]. Journal of Sichuan University(Engineering Science Edition), 2010, 42(S1): 7-14] DOI: 10.15961/j.jsuese.2010.s1.007
[37] 马海淼, 罗永红, 南凯. 基于环境噪声表征石膏地滑坡堆积区场地特征[J]. 科学技术与工程, 2022, 22(22): 9508-9515. [MA Haimiao, LUO Yonghong, NAN Kai. Site characteristics of gypsum landslide accumulation based on environmental noise [J]. Science Technology and Engineering, 2022, 22(22): 9508-9515] DOI: 10.3969/j.issn.1671-1815.2022.22.007
[38] 江鹏, 李萍萍, 李同林, 等. 2022年四川泸定Ms6.8地震强震动记录特征[J]. 地震研究, 2023, 46(4): 593-602. [JIANG Peng, LI Pingping, LI Tonglin, et al. The characteristics of strong motion records of the 2022 Luding, Sichuan Ms6.8 earthquake [J]. Journal of Seismological Research, 2023, 46(4): 593-602] DOI: 10.20015/j.cnki.ISSN1000-0666.2023.00570
[39] GB50011—2010. 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010. [GB50011-2010. Code for seismic design of buildings [S]. Beijing: China Architecture and Building Press, 2010]

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 03- 04; 改回日期(Accepted date):2024- 08-19
基金项目(Foundation item): 国家自然科学基金(42077257)。[National Natural Science Foundation of China(42077257)]
作者简介(Biography): 王鹏程(2000-),男,四川内江人,博士研究生,主要研究方向:工程地质学。 [WANG Pengcheng(2000-), male, Neijiang, Sichuan province, Ph.D., candidate, research on engineering geology] E-mail:1727382784@qq.com
*通讯作者(Corresponding author): 罗永红(1981-),男,博士,教授,主要研究方向:工程地质学。[LUO Yonghong(1981-), male, Ph.D., professor, research on engineering geology] E-mail: lyh445890689@qq.com
更新日期/Last Update: 2024-07-30