[1]闫玉平,王进华,刘睿翀.帕隆藏布流域积雪特征研究[J].山地学报,2024,(5):739-750.[doi:10.16089/j.cnki.1008-2786.000858]
 YAN Yuping,WANG Jinhua,LIU Ruicong.Characteristics of Snowpack along the Palong Zangbo Basin, Tibet, China[J].Mountain Research,2024,(5):739-750.[doi:10.16089/j.cnki.1008-2786.000858]
点击复制

帕隆藏布流域积雪特征研究
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第5期
页码:
739-750
栏目:
研究简报
出版日期:
2024-10-20

文章信息/Info

Title:
Characteristics of Snowpack along the Palong Zangbo Basin, Tibet, China
文章编号:
1008-2786-(2024)5-739-11
作者:
闫玉平王进华刘睿翀
(中铁第一勘察设计院集团有限公司,西安 710043)
Author(s):
YAN Yuping WANG Jinhua LIU Ruicong
(China Railway First Survey and Design Institute Group Co., Ltd., Xi'an 710043, China)
关键词:
帕隆藏布流域 积雪 雪坑 分布特征
Keywords:
the Palong Zangbo basin snowpack snow pit characteristics of snowpack
分类号:
P642
DOI:
10.16089/j.cnki.1008-2786.000858
文献标志码:
A
摘要:
帕隆藏布流域的冰雪及其衍生灾害进入高发期。大量前期研究基于现场调查与遥感技术,对帕隆藏布流域历史雪崩进行了统计分析,然而针对域内积雪特性研究却鲜有文献报道。本文通过气象数据收集整理、积雪调查与雪坑物理特性测量,分析了帕隆藏布流域降雪变化趋势、积雪物理特性与分布特征。数据表明:(1)1970—2020年,帕隆藏布流域冬春季平均气温显著升高,降水量波动幅度增大,气候不稳定性增强,2000年以来相对湿度与最大风速显著减小。(2)冬春季(冷季)气候变暖,雪崩发生区正温日数增加。波密地区年降水量、冷季降水量明显增加,极端强降雪增加,积雪消融活跃,同时强风多,相对湿度大(平均大于50%),为雪崩发生创造了物质与热量条件。(3)帕隆藏布流域属于稳定季节性积雪区,域内积雪含水量变化范围为1%~2%,表层以下雪坑积雪含水量低; 积雪密度多为0.1~0.2 g·cm-3,表层因不同程度板结而密度稍高; 积雪温度随深度增加呈上升趋势,局部可能为0 ℃以上。(4)域内积雪呈现自东南向西北减薄、自河谷向山顶增大趋势,西南、南与东南坡向积雪分布明显比其他坡向多,阳坡积雪多于阴坡。2003—2015年最大积雪深度变化范围为10~60 cm,其中,松宗镇至然乌段2003—2015年最大雪深达到30~60 cm,为雪崩的易发、高发区,该段落内线路工程选线与工程设置宜充分考虑雪崩的影响。帕隆藏布流域积雪研究对于深化域内雪崩机理认识、雪崩数值模型参数率定、雪崩防治、线路工程选线具有重要意义。
Abstract:
The Palong Zangbo basin of Tibet is the largest marine glacier distribution area in China. Snow avalanche and their derivatives in the basin enter a high incidence period. Preliminary investigations had been conducted to statistically analyze the historical snow avalanche events in the basin based on field survey and remote sensing, but for the snow accumulation characteristics of the region is rarely reported in the literature.
In this study, it collected both long and short series of meteorological data at field observations in the Palong Zangbo basin; it performed on-site survey and measurement of physical characteristics of snow pits at selected sites; then the trend of snowfall, the physical properties of snowpack and distribution were analyzed.
(1)From 1970 to 2020, the mean yearly temperature in winter and spring in Palong Zangbo has increased significantly. The fluctuation of precipitation increased with instability in climate patterns, and the relative humidity and maximum wind speed has decreased significantly since 2000.
(2)With the warming in winter and spring(cold season), the number of days above zero degrees Celsius in the avalanche area was increasing. In the region of Bomi, the annual and cold season precipitation increased significantly, with sharp increase in extreme heavy snowfalls, characterized by active snow melting, frequent strong winds, and high relative humidity(average greater than 50%), which created material and heat conditions for avalanche occurrence.
(3)The Palong Zangbo basin was a stable seasonal snow cover area, with snow water content mostly in the range of 1%-2%, which decreased with depth in snow pits. The density of snowpack was mostly between 0.1-0.2 g·cm-3, with slightly higher in snow surface due to hardening to some extent; snow temperature increased with depth, possibly reaching up to 0 ℃ at some sites.
(4)The snowpack distribution described a trend of thinning from southeast to northwest, and increasing from the valley floor to the crest. The snows on the southwest, south, and southeast slopes were noticeable thicker than those on slopes with other aspects; snows accumulation on sunny slopes were more than those on shady slopes. From 2003 to 2015, the maximum snow depth in the basin varied from 10 to 60 cm, of which the maximum snow depth reached to 30 to 60 cm in the section from Songzong Town to Ranwu Town, where it had been known for high snow avalanche incidence and it should be skilfully avoided in route selection and designed by engineering settings in railway engineering.
This study of snows characteristics is of great significance for deepening the understanding of avalanche mechanism, parameter determination of avalanche in modelling, avalanche control, and railway engineering route optimization.

参考文献/References:

[1] 康世昌, 陈锋, 叶庆华, 等. 1970—2007年西藏念青唐古拉峰南、北坡冰川显著退缩[J]. 冰川冻土, 2007, 29(6): 869-873. [KANG Shichang, CHEN Feng, YE Qinghua, et al. Glacier retreating dramatically on the Mt.Nyainqêntanglha during the last 40 years [J]. Journal of Glaciology and Geocryology, 2007, 29(6): 869-873]
[2] 张根, 孙春卫, 杨成业, 等. 帕隆藏布流域沟槽型雪崩发育特征及分布规律研究[J]. 高原科学研究, 2021, 5(1): 35-43. [ZHANG Gen, SUN Chunwei, YANG Chengye, et al. Study on the developmental characteristics and distribution pattern of grooved avalanche in Palongzangbu river basin [J]. Plateau Science Research, 2021, 5(1): 35-43] DOI: 10.16249/j.cnki.2096-4617.2021.01.005
[3] 冀钦, 杨建平, 陈虹举. 1961-2015年青藏高原降水量变化综合分析[J]. 冰川冻土, 2018, 40(6): 1090-1099. [JI Qin, YANG Jianping, CHEN Hongju. Comprehensive analysis of the precipitation changes over the Tibetan Plateau during 1961-2015 [J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1090-1099] DOI: 10.7522/j.issn.1000-0240.2018.0415
[4] 王进华. 滇藏铁路主要工程地质问题及地质选线原则研究[J]. 铁道标准设计, 2021, 65(7): 7-13. [WANG Jinhua. Research on main engineering geological problems and principles of geological route selection for Yunnan-Tibet railway [J]. Railway Standard Design, 2021, 65(7): 7-13] DOI: 10.13238/j.issn.1004-2954.202007220004
[5] LI Xiuping, WANG Lei, CHEN Deliang, et al. Near-surface air temperature lapse rates in the mainland China during 1962-2011 [J]. Journal of Geophysical Research: Atmospheres, 2013, 118(14): 7505-7515. DOI: 10.1002/jgrd.50553
[6] SCHWEIZER J. Snow avalanche formation and dynamics [J]. Cold Regions Science and Technology, 2008, 54(3): 153-154. DOI: 10.1016/j.coldregions.2008.08.005
[7] ECKERT N, BAYA H, DESCHATRES M, et al. Assessing the response of snow avalanche runout altitudes to climate fluctuations using hierarchical modeling: Application to 61 winters of data in France [J]. Journal of Climate, 2010, 23(12): 3157-3180.
[8] VILAJOSANA I, SURIÑACH E, KHAZARADZE G, et al. Snow avalanche energy estimation from seismic signal analysis [J]. Cold Regions Science and Technology, 2007, 50(1): 72-85.
[9] 文洪, 王栋, 王生仁, 等. 藏东南帕隆藏布流域雪崩关键影响因素与易发性区划研究[J]. 工程地质学报, 2021, 29(2): 404-415. [WEN Hong, WANG Dong, WANG Shengren, et al. Key predisposing factors and susceptibility mapping of snow avalanche in Parlung-Tsangpo catchment, southeast Tibetan plateau [J]. Journal of Engineering Geology, 2021, 29(2): 404-415] DOI: 10.13544/j.cnki.jeg.2021-0121
[10] 郝建盛, 黄法融, 冯挺, 等. 亚洲高山区雪崩灾害时空分布特点及其诱发因素分析[J]. 山地学报, 2021, 39(2): 304-312. [HAO Jiansheng, HUANG Farong, FENG Ting, et al. Analysis of spatio-temporal distribution characteristics of snow avalanche disaster and its triggering factors in the high mountain Asia [J]. Mountain Research, 2021, 39(2): 304-312]DOI: 10.16089/j.cnki.1008-2786.000596
[11] 王中隆. 中国积雪、风吹雪和雪崩研究[J]. 冰川冻土, 1988, 10(3): 273-278. [WANG Zhonglong. Researches on snow cover, snow-drifts and avalanches in China [J]. Journal of Glaciology and Geocryology, 1988, 10(3): 273-278]
[12] 谢自楚, H.B.谢维尔斯基, 张志忠. 天山积雪与雪崩[M]. 长沙: 湖南师范大学出版社, 1996. [XIE Zichu, SEVERSKY H B, ZHANG Zhizhong. Snow and avalanche in Tianshan Mountains [M]. Changsha: Hunan Normal University Press, 1996]
[13] 王彦龙. 中国雪崩研究[M]. 北京: 海洋出版社, 1992. [WANG Yanlong. Avalanche research in China[M]. Beijing: Ocean Press, 1992]
[14] 仇家琪, 等. 雪崩学[M]. 乌鲁木齐: 新疆科学技术出版社, 2002. [QIU Jiaqi, et al. Avalanche science [M]. Urumqi: Xinjiang Science and Technology Press, 2002]
[15] 刘健, 史志文, 刘兰. 天山公路雪崩的判别方法分析[J]. 公路交通科技(应用技术版), 2011, 7(7): 304-306. [LIU Jian, SHI Zhiwen, LIU Lan. Analysis on discriminant method of highway avalanche in Tianshan Mountains [J]. Highway Traffic Science and Technology(Applied Technology Edition), 2011, 7(7): 304-306]
[16] 姜逢清. 公路雪崩危险指标与雪崩灾害评价—以伊(犁)焉(耆)公路巩乃斯沟口至艾肯山隘段为例[J]. 干旱区地理, 1994, 17(3): 74-78. [JIANG Fengqing. Calculation of avalanche hazard-indexes and evaluation of avalanche disasters along a mountain highway: A case study along a section of Ili-Yangqi highway [J]. Arid Land Geography, 1994, 17(3): 74-78] DOI: 10.13826/j.cnki.cn65-1103/x.1994.03.010
[17] 赵鑫, 程尊兰, 李亚军, 等. 川藏公路安久拉山至古乡段雪崩分布规律[J]. 山地学报, 2015, 33(4): 480-487. [ZHAO Xin, CHENG Zunlan, LI Yajun, et al. Avalanche distribution analysis in Anjoula Mountain to Guxiang section of Sichuan-Tibet highway [J]. Mountain Research, 2015, 33(4): 480-487] DOI: 10.16089/j.cnki.1008-2786.000060
[18] 杨天军. 川藏公路南线(西藏境)雪崩灾害监测预警技术研究[J]. 中国科技论文, 2018, 13(8): 921-925. [YANG Tianjun. Research on the avalanche disaster monitoring and warning technology in south line of Sichuan-Tibet highway in territory Tibet [J]. China Science Paper, 2018, 13(8): 921-925]
[19] 魏玉光, 杨浩, 韩学雷. 青藏高原铁路沿线雪崩危险度评价方法[J]. 中国安全科学学报, 2004, 14(4): 44-46. [WEI Yuguang, YANG Hao, HAN Xuelei. Method for avalanche risk evaluation along Qinghai-Tibet Plateau railway [J]. China Safety Science Journal, 2004, 14(4): 44-46] DOI: 10.16265/j.cnki.issn1003-3033.2004.04.010
[20] 文洪. 帕隆藏布流域沟槽型雪崩时空演化机制研究[D]. 成都: 西南交通大学, 2022: 1-166. [WEN Hong. Spatio-temporal evolution mechanism of channeled snow avalanches in the Parlung Tsangpo catchment [D]. Chengdu: Southwest Jiaotong University, 2022: 1-166] DOI: 10.27414/d.cnki.gxnju.2022.003255
[21] 马东涛, 崔鹏, 王忠华. 中尼公路雪害及防灾对策[J]. 山地学报, 2002, 20(1): 59-63. [MA Dongtao, CUI Peng, WANG Zhonghua. An approach on snow hazards and their countermeasures along Sino-Nepalese highway [J]. Mountain Research, 2002, 20(1): 59-63] DOI: 10.16089/j.cnki.1008-2786.2002.01.010
[22] 张华伟, 童海刚, 鲁安新, 等. 精河到伊宁公路沿线积雪及其影响[J]. 山地学报, 2012, 30(1): 48-56. [ZHANG Huawei, TONG Haigang, LU Anxin, et al. Snow cover along the Jinghe to Yining highway and its impact [J]. Mountain Research, 2012, 30(1): 48-56] DOI: 10.16089/j.cnki.1008-2786.2012.01.019
[23] 刘大翔, 程尊兰, 赵鑫, 等. 雪崩防治工程研究与应用现状[J]. 山地学报, 2013, 31(4): 425-433. [LIU Daxiang, CHENG Zunlan, ZHAO Xin, et al. Research and application situation of avalanche prevention and control engineering [J]. Mountain Research, 2013, 31(4): 425-433] DOI: 10.16089/j.cnki.1008-2786.2013.04.008
[24] 周石硚. 雪崩危险度评价的程序和方法[J]. 湖南师范大学自然科学学报, 2002, 25(4): 82-87. [ZHOU Shiqiao. Procedure and methods for avalanche hazard evaluation [J]. Journal of Natural Science of Hunan Normal University, 2002, 25(4): 82-87]
[25] 周石硚, 谢自楚. 雪崩危险度评价的类型、特征和方法[J]. 自然灾害学报, 2003, 12(2): 45-50. [ZHOU Shiqiao, XIE Zichu. Categories and methods of avalanche hazard evaluation [J]. Journal of Natural Disasters, 2003, 12(2): 45-50] DOI: 10.1357/j.jnd.2003.0209
[26] 陈楚江, 余绍淮, 王丽园, 等. 雪崩灾害的遥感量化分析与工程选线[J]. 山地学报, 2009, 27(1): 63-69. [CHEN Chujiang, YU Shaohuai, WANG Liyuan, et al. The quantitative analysis of snow avalanches with remote sensing and engineering scheme selection [J]. Mountain Research, 2009, 27(1): 63-69] DOI: 10.16089/j.cnki.1008-2786.2009.01.008
[27] 龚成麒, 董晓华, 魏冲, 等. 1978-2018年青藏高原降水区划及各区降水量时空演变特征[J]. 水资源与水工程学报, 2022, 33(5): 96-108. [GONG Chengqi, DONG Xiaohua, WEI Chong, et al. Precipitation division of the Qinghai-Tibet Plateau from 1978 to 2018 and spatiotemporal evolution characteristics of each zone [J]. Journal of Water Resources & Water Engineering, 2022, 33(5): 96-108] DOI: 10.11705/j.issn.1672-643X.2022.05.12
[28] 高培, 魏文寿, 刘明哲. 新疆西天山积雪稳定期不同下垫面雪物理特性对比[J]. 兰州大学学报(自然科学版), 2012, 48(1): 15-19. [GAO Pei, WEI Wenshou, LIU Mingzhe. Contrastive analysis of snow characteristics of heterogeneous surface in the stable periods in the west Tienshan, Xinjiang [J]. Journal of Lanzhou University(Natural Sciences), 2012, 48(1): 15-19] DOI: 10.13885/j.issn.0455-2059.2012.01.019
[29] 车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34(11): 1247-1253. [CHE Tao, HAO Xiaohua, DAI Liyun, et al. Snow cover variation and its impacts over the Qinghai-Tibet Plateau [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1247-1253] DOI: 10.16418/j.issn.1000-3045.2019.11.007
[30] 王建, 车涛, 李震, 等. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-26. [WANG Jian, CHE Tao, LI Zhen, et al. Investigation on snow characteristics and their distribution in China [J]. Advances in Earth Science, 2018, 33(1): 12-26] DOI: 10.11867/j.issn.1001-8166.2018.01.0012

备注/Memo

备注/Memo:
收稿日期(Received date): 2022- 08-15; 修回日期(Accepted date):2024- 09- 05
基金项目(Foundation item): 国家重点研发计划(2017YFA0603101)。[National Key Research and Development Program(2017YFA0603101)]
作者简介(Biography): 闫玉平(1989-),男,博士,高级工程师,主要研究方向:崩塌、边(滑)坡稳定性分析与加固,支挡结构设计,铁路工程勘察设计。[YAN Yuping(1989-), male, Ph.D., senior engineer, research on collapse, slope stability analysis and reinforcement, retaining structure design, railway engineering investigation and design] E-mail: 2420907827@qq.com
更新日期/Last Update: 2024-09-30