[1]何晓丽,何俊波,吴艳宏*.滑坡体成土作用早期影响生物有效磷(Bio-P)含量的主要因素[J].山地学报,2024,(6):781-790.[doi:10.16089/j.cnki.1008-2786.000861]
 HE Xiaoli,HE Junbo,WU Yanhong*.Major Factors Regulating Bioavailable Phosphorus(Bio-P) Content at Early Stages of Pedogenesis in Landslide Deposits[J].Mountain Research,2024,(6):781-790.[doi:10.16089/j.cnki.1008-2786.000861]
点击复制

滑坡体成土作用早期影响生物有效磷(Bio-P)含量的主要因素
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第6期
页码:
781-790
栏目:
山地环境
出版日期:
2024-12-20

文章信息/Info

Title:
Major Factors Regulating Bioavailable Phosphorus(Bio-P) Content at Early Stages of Pedogenesis in Landslide Deposits
文章编号:
1008-2786-(2024)6-781-10
作者:
何晓丽1何俊波23吴艳宏2*
(1.湖北文理学院 资源环境与旅游学院,湖北 襄阳 441053; 2.中国科学院、水利部成都山地灾害与环境研究所,成都 610213; 3.中国科学院大学,北京 100049)
Author(s):
HE Xiaoli1 HE Junbo23 WU Yanhong2*
(1.College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China; 2. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences & Ministry of Water Resources,Chengdu 610213, China; 3.University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
滑坡堆积体 成土早期 岷江上游 大渡河泸定段 生物有效磷
Keywords:
landslide deposit early pedogenesis the upper Minjiang River the Luding section of the Daduhe River bioavailable phosphorus
分类号:
P951
DOI:
10.16089/j.cnki.1008-2786.000861
文献标志码:
A
摘要:
生物有效磷(Bio-P)是植物生长的关键营养元素,关系到植物的生长态势和生产力水平,在土壤发育和生态系统功能调控中发挥核心作用。其释放、吸收及固定过程受到母岩类型、气候条件(特别是温度和降水状况)、土壤微生物活性及其酶促作用等多重因素的共同制约。然而,这些影响因素的交互作用及其对成土早期Bio-P循环的影响尚未得到充分阐释。本研究选取了川西地区14个年龄为5~30 a的滑坡堆积体,通过研究土壤微生物群落、母质特性及气候条件对Bio-P含量的影响,旨在探究成土早期影响Bio-P浓度的机制。研究结果显示,(1)滑坡堆积体土体Bio-P的含量呈现显著的空间异质性。大渡河泸定段与岷江上游地区的Bio-P浓度存在统计学上的显著差异(U=48, p=0.0012),前者质量浓度区间为41.18~60.02 mg?kg-1,显著高于后者的27.88~44.19 mg?kg-1。(2)在影响Bio-P含量变异的诸多因素中,气候、母质及微生物的贡献各不相同,其中气候条件在土壤磷循环调控中占据主导地位,其解释度达到57%。温度是决定Bio-P浓度的关键因素,其重要性权重为0.24。温度不仅直接通过调控土壤中磷的化学过程(涵盖溶解、吸附与沉淀等)影响Bio-P含量,还间接通过增强土壤微生物活性发挥作用,且其直接效应值0.49明显高于间接效应值0.30。(3)在生态系统管理与恢复实践中,应将温度调控作为成土早期调控土壤Bio-P浓度的基本策略。本研究成果可为土壤恢复和制定生态保护策略提供科学依据。
Abstract:
Bioavailable phosphorus(Bio-P)is a decisive nutrient element in soil, governing plant growth and productivity levels, and plays a central role in soil evolution and regulation of ecosystem functions. Its release, absorption, and fixation processes are regulated by a combination of factors such as parent rock type, climatic conditions(especially temperature and precipitation), soil microbial activity and its enzymatic role. Unfortunately, the interactions among these influencing factors and their effects on Bio-P cycling during early pedogenesis had not been fully elucidated.
In this study, soils at 14 landslide deposits with ages ranging from 5 to 30 years in western Sichuan, China were collected for testing, and the effects of soil microbial community, parent rock properties and climatic conditions on Bio-P content were studied, so as to explore the mechanism of influencing Bio-P concentration in the early stage of soil formation.
(1)The content of Bio-P in the soils of landslide deposits exhibited significant spatial heterogeneity. There was a statistically significant difference in Bio-P concentrations between the soils sampled at the Luding section of the Daduhe River and the upper reaches of the Minjiang River(U=48, p=0.0012). The concentration range of the former was 41.18-60.02 mg·kg-1, which was significantly higher than that of the latter, 27.88-44.19 mg·kg-1.
(2)Among the many factors influencing the variability of Bio-P content, the contributions of climate, parent rock and microorganisms varied, with climatic conditions dominating the regulation of soil phosphorus cycle, with a 57% degree of explanation. Temperature was a key factor determining Bio-P concentration with a relative importance weight of 0.24. Temperature not only affected Bio-P content directly by regulating the chemical processes of phosphorus in soils(covering dissolution, adsorption and precipitation, etc.), but also indirectly by enhancing soil microbial activity, and its direct effect(0.49)was significantly higher than the indirect effect(0.30).
(3)Temperature regulation should be used as a basic strategy for regulating soil Bio-P concentration during the early stages of soil formation in ecosystem management and restoration practices.
The results of this research can provide a scientific basis for soil restoration and the development of ecological conservation strategies.

参考文献/References:

[1] DELGADO-BAQUERIZO M, MAESTRE F T, GALLARDO A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands [J]. Nature, 2013, 502(7473): 672-676. DOI: 10.1038/nature12670
[2] BARROW N J. On the reversibility of phosphate sorption by soils [J]. Journal of Soil Science, 1983, 34: 751-758. DOI: 10.1111/j.1365-2389.1983.tb01069.x
[3] BRADSHAW A D. Restoration: The acid test for ecology. [C]// JORDAN W R, GILPIN M E, ABER J D. Restoration ecology: A synthetic approach to ecological research, Cambridge: Cambridge University Press, 1987: 23-29.
[4] LAMBERS H, CAWTHRAY G R, GIAVALISCO P, et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency [J]. New Phytologist, 2012, 196(4): 1098-1108. DOI: 10.1111/j.1469-8137.2012.04285.x
[5] CREWS T E, KITAYAMA K, FOWNES J H, et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii [J]. Ecology, 1995, 76(5): 1407-1424. DOI: 10.2307/1938144
[6] CROSS A F, SCHLESINGER W H. A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems [J]. Geoderma, 1995, 64(3-4): 197-214. DOI: 10.1016/0016-7061(94)00023-4
[7] WALKER T W, SYERS J K. The fate of phosphorus during pedogenesis [J]. Geoderma, 1976, 15(1): 1-19. DOI: 10.1016/0016-7061(76)90066-5
[8] VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource [J]. New Phytologist, 2003, 157(3): 423-447. DOI: 10.1046/j.1469-8137.2003.00695.x
[9] CLEVELAND C C, LIPTZIN D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? [J]. Biogeochemistry, 2007, 85(3): 235-252. DOI: 10.2307/20456544
[10] HARIPAL K, SAHOO S. Microbial biomass Carbon, Nitrogen, and Phosphorus dynamics along a chronosequence of abandoned tropical agroecosystems [J]. International Journal of Current Microbiology and Applied Sciences, 2014, 3(9): 956-970.
[11] VITOUSEK P M, FARRINGTON H. Nutrient limitation and soil development: Experimental test of a biogeochemical theory [J]. Biogeochemistry, 1997, 37: 63-75. DOI: 10.1023/A:1005757218475
[12] HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review [J]. Plant and Soil, 2001, 237(2): 173-195. DOI: 10.1023/A:1013351617532
[13] ZHANG Min, LI Chengliang, LI Y C, et al. Phosphate minerals and solubility in native and agricultural calcareous soils [J]. Geoderma, 2014, 232-234: 164-171. DOI: 10.1016/j.geoderma.2014.05.015
[14] HE Junbo, WU Yanhong, ZHU He, et al. Soil phosphorus fractions dynamics along a 22-ka chronosequence of landslides, western Sichuan, China [J]. Catena, 2024, 235(204): 107674. DOI: 10.1016/j.catena.2023.107674
[15] ZHAO Mengxin, XUE Kai, WANG Feng, et al. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping [J]. The ISME Journal, 2014, 8(10): 2045-2055. DOI: 10.1038/ismej.2014.46
[16] ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems [J]. Ecology Letters, 2007, 10(12): 1135-1142. DOI: 10.1111/J.1461-0248.2007.01113.X
[17] 陈国光, 计凤桔, 周荣军, 等. 龙门山断裂带晚第四纪活动性分段的初步研究[J]. 地震地质, 2007, 29(3): 657-673. [CHEN Guoguang, JI Fengju, ZHOU Rongjun, et al. Primary research of activity segmentation of Longmenshan fault zone since Late-Quaternary [J]. Seismology and Geology, 2007, 29(3): 657-673]
[18] 魏旭, 彭志忠, 刘兴臣, 等. 泸石高速公路沿线历史地震诱发滑坡遥感调查及发育分布规律[J]. 地质科技通报, 2024, 43(2): 386-396. [WEI Xu, PENG Zhizhong, LIU Xingchen, et a1. Remote sensing investigation and development distribution of historical earthquake-induced landslides along Lushi Expressway [J]. Bulletin of Geological Science and Technology, 2024, 43(2): 386-396] DOI: 10.19509/j.cnki.dzkq.tb20220653
[19] 吴俊峰. 大渡河流域重大地震滑坡发育特征与成因机理研究[D]. 成都: 成都理工大学, 2013: 1-135. [WU Junfeng. Research on development characteristics and genetic mechanism of the seismic landslides in Daduhe River [D]. Chengdu: Chengdu University of Technology, 2013: 1-135]
[20] 王晶晶. 基于深度学习的泸定县滑坡隐患识别与易发性评估方法研究[D]. 武汉: 中国地质大学, 2023: 1-130. [WANG Jingjing. Research on deep learning methods for identifying potential landslides and assessing susceptibility in Luding County [D]. Wuhan: China University of Geosciences, 2023: 1-130] DOI: 10.27492/d.cnki.gzdzu.2023.000233
[21] 刘江伟. 大渡河姑咱—得妥河段大型滑坡形成机制及危险性评价研究[D]. 成都: 成都理工大学, 2021: 1-95. [LIU Jiangwei. Study on genetic mechanism and risk assessment of large-scale landslides in the Guza-Detuo section of the Dadu River [D]. Chengdu: Chengdu University of Technology, 2021: 1-95] DOI: 10.26986/d.cnki.gcdlc.2021.000241
[22] 郝晓光, 刘根友, 王世敏, 等. 利用单频实时动态定位技术监测小金县春厂坝滑坡[J]. 科学技术与工程, 2019, 19(19): 8-11. [HAO Xiaoguang, LIU Genyou, WANG Shimin, et al. Monitoring the Chunchang dam landslide in Xiaojin County using single epoch real time kinematic technology [J]. Science Technology and Engineering, 2019, 19(19): 8-11]
[23] 祝浩然. 阿坝州地质灾害演化规律及风险性评价[D]. 成都: 成都理工大学, 2021: 1-89. [ZHU Haoran. Evolution law and risk assessment of geological hazards in Aba Prefecture [D]. Chengdu: Chengdu University of Technology, 2021: 1-89] DOI: 10.26986/d.cnki.gcdlc.2021.001091
[24] 晏鄂川, 刘汉超, 张悼元. 茂汶─汶川段岷江两岸滑坡分布规律[J]. 山地研究, 1998, 16(2): 109-113. [YAN Echuan, LIU Hanchao, ZHANG Zhuoyuan. A study on the distribution regularity of landslide in the Minjiang River between Maowen and Menchuan County [J]. Mountain Research, 1998, 16(2): 109-113]
[25] 柴贺军, 刘汉超. 岷江上游多级多期崩滑堵江事件初步研究[J]. 山地学报, 2002, 20(5): 616-620. [CAI Hejun, LIU Hanchao. Study on landslide damming of river in upper of Mingjiang River [J]. Mountain Research, 2002, 20(5): 616-620] DOI: 10.16089/j.cnki.1008-2786.2002.05.019
[26] 陈理. 四川茂县新磨村高速滑坡启动机理研究[D]. 成都: 西南交通大学, 2015: 1-71. [CHEN Li. Study on the initiation mechanism of Xinmo high-speed rockslide in Mao Xian, Sichuan [D]. Chengdu: Southwest Jiaotong University, 2015: 1-71] DOI: 10.27414/d.cnki.gxnju.2020.000625
[27] 陈鸣明, 松涛. 理县全面排查255个地质灾害点[N]. 四川日报, 2010- 06-26(006). [CHEN Mingming, SONG Tao. A total of 255 geological disaster sites were investigated in Lixian County [N]. Sichuan Daily, 2010- 06-26(006)]
[28] 文静. R语言与GIS支持下的理县滑坡空间分布研究[D]. 绵阳: 西南科技大学, 2015: 1-62. [WEN Jing. Study on the landslide spatial distribution of Lixian County under the support of GIS and R language [D]. Mianyang: Southwest University of Science and Technology, 2015: 1-62]
[29] HEDLEY M J, STEWART J W B. Method to measure microbial phosphate in soils [J]. Soil Biology and Biochemistry, 1982, 14(4): 377-385. DOI: 10.1016/0038-0717(82)90009-8
[30] LOGAH V, SAFO E Y, QUANSAH C, et al. Soil microbial biomass Carbon, Nitrogen and Phosphorus dynamics under different amendments and cropping systems in the semi-deciduous forest zone of Ghana [J]. West African Journal of Applied Ecology, 2010, 17(1): 121-133.
[31] WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure [J]. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169. DOI: 10.1016/0038-0717(90)90046-3
[32] GIANFREDA L, RAO M A, PIOTROWSKA A, et al. Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution [J]. Science of the Total Environment, 2005, 341(1-3): 265-279. DOI: 10.1016/j.scitotenv.2004.10.005
[33] ALLISON V J, CONDRON L M, PELTZER D A, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand [J]. Soil Biology and Biochemistry, 2007, 39: 1770-1781. DOI: 10.1016/j.soilbio.2007.02.006
[34] TURNER B L, LALIBERTé E. Soil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich mediterranean shrubland in southwestern Australia [J]. Ecosystems, 2015, 18(2): 287-309. DOI: 10.1007/s10021-014-9830-0
[35] NESBITT H W, YOUNG G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. DOI: 10.1016/0016-7037(84)90408-3
[36] DESLIPPE J R, BENTLEY S B. The role of wetland restoration in mediating phosphorus ecosystem services in agricultural landscapes [J]. Current Opinion in Biotechnology, 2025, 91: 103227. DOI: 10.1016/j.copbio.2024.103227
[37] CONANT R T, RYAN M G, AGREN G I, et al. Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward [J]. Global Change Biology, 2011, 17(11): 3392-3404. DOI: 10.1111/j.1365-2486.2011.02496.x
[38] LI Ye, ZHANG Liping, FANG Shengzuo, et al. Variation of soil enzyme activity and microbial biomass in poplar plantations of different genotypes and stem spacings [J]. Journal of Forestry Research, 2018, 29: 963-972. DOI: 10.1007/s11676-017-0524-2

相似文献/References:

[1]屈永平,唐川,王金亮,等.强震区泥石流启动机制[J].山地学报,2012,(03):336.
 QU Yongping,TANG Chuan,WUANG Jingliang,et al.Debris Flow Initiation Mechanisms in Strong Earthquake Area[J].Mountain Research,2012,(6):336.
[2]赵勇,许模,郭健,等.大渡河双家坪古平推式滑坡堆积特征及形成机制[J].山地学报,2015,(01):58.
 ZHAO Yong,XU Mo,GUO Jian,et al.Characteristics of Accumulation and Mechanism of Shuangjiaping Ancient Translational Landslide in the Dadu River,China[J].Mountain Research,2015,(6):58.

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 06-12; 改回日期(Accepted date):2024-12- 07
基金项目(Foundation item): 湖北省自然科学基金(2022CFB783)。 [Natural Science Foundation of Hubei Province(2022CFB783)]
作者简介(Biography): 何晓丽(1990-),女,湖北宜城人,博士,副教授,主要研究方向:土壤养分元素的生物地球化学循环。[HE Xiaoli(1990-), female, born in Yicheng, Hubei Province, Ph.D., associate professor, research on the biogeochemical cycling of soil nutrient elements] E-mail: xlhe@hbuas.edu.cn
*通讯作者(Corresponding author): 吴艳宏(1969-),男,博士,研究员,主要研究方向:自然地理学。[WU Yanhong(1969-), male, Ph.D., professor, specialized in physical geography] E-mail: yhwu@imde.ac.cn
更新日期/Last Update: 2024-11-30