[1]刘兆旭,任锦程,赵艳青,等.泥石流透过型拦砂坝群结构优化设计[J].山地学报,2024,(6):791-804.[doi:10.16089/j.cnki.1008-2786.000862]
 LIU Zhaoxu,REN Jincheng,ZHAO Yanqing,et al.Optimization Design of Permeable Debris Flow Check Dam Cascade[J].Mountain Research,2024,(6):791-804.[doi:10.16089/j.cnki.1008-2786.000862]
点击复制

泥石流透过型拦砂坝群结构优化设计
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第6期
页码:
791-804
栏目:
山地灾害
出版日期:
2024-12-20

文章信息/Info

Title:
Optimization Design of Permeable Debris Flow Check Dam Cascade
文章编号:
1008-2786-(2024)6-791-14
作者:
刘兆旭12任锦程2赵艳青3苏鹏程12*汪 洋2龚 旭24
(1. 西藏大学 工学院,拉萨 850032; 2. 中国科学院、水利部成都山地灾害与环境研究所,成都 610213; 3. 中国电建集团北京勘测设计研究院有限公司,北京 100024; 4. 中国科学院大学,北京 100049)
Author(s):
LIU Zhaoxu12 REN Jincheng2 ZHAO Yanqing3 SU Pengcheng12* WANG Yang2GONG Xu24
(1. College of Engineering, Tibet University, Lhasa 850032, China; 2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Resources, Chengdu 610213, China; 3. Beijing Engineering Corporation Limited, Power China, Beijing 100024, China; 4. University of Chinese Academy of Sciences, Beijing 100049,China)
关键词:
泥石流 设计优化 Massflow 透过型拦砂坝群 开口比
Keywords:
debris flow design optimizations Massflow permeable check dam cascade opening ratio
分类号:
X43; P642.23
DOI:
10.16089/j.cnki.1008-2786.000862
文献标志码:
A
摘要:
泥石流常采用拦砂坝坝群布局工程措施。如何达到泥石流拦砂坝群,尤其是透过型拦砂坝群在多级拦截下的最优协同作用,是目前研究的难点。本文选择司地沟为研究区,在无人机数据和野外考察的基础上,以透过型拦砂坝群的重要设计参数开口比作为主要研究参数,采用基于改进MacCormack-TVD有限差分法的Massflow软件对开口比L为1、2、3的梳齿坝群进行数值模拟,得到泥石流在不同L条件下的泥深、流速及堆积面积。研究结果表明:(1)降雨频率为1%时,泥石流运动至沟口的最大泥深为11.4 m,最大流速为16.50 m?s-1,在沟口形成堆积面积为35.86×104 m2的堆积扇。(2)拦砂坝群可有效拦截泥石流物质量,最大泥深出现在坝前,泥石流运动时长随开口比增加而减小,开口比为1时泥石流运动至3号坝址处的时间有效延长了100 s。(3)坝前后流速随开口比L增加而增加,坝前拦截物质量随开口宽度增大而减小; 随L增大,1号坝功能由拦截向排导转变,2号坝拦截效能呈现先增加后减小的趋势,主要拦截物质由1、2号坝向2、3号坝转变,L=3为研究区拦砂坝群最佳开口比。本文针对泥石流透过型拦砂坝群结构优化设计的关键参数,通过理论分析与数值模拟,系统探讨透过型拦砂坝群设计中关键参数的影响机理及优化设计策略,以期为实际工程提供技术参考。
Abstract:
Engineering measures for debris flow control often employ the layout of a cascade of check dams. An engineered challenge for building a check dam cascade lies in achieving a designed synergistic effect of each dam in the grouping dams, especially to the utmost exploiting a cluster of permeable check dams designed with a function of cascading debris interception.
In this study, it selected the Sidi Gully as a research case. It used field surveys, satellite remote sensing and high-precision unmanned aerial vehicle(UAV)remote sensing to identify the topographic characteristics and geo-source distribution of the debris flow gully; it used Massflow software based on improved MacCormack-TVD finite difference method, to establish a spatial layout model of the comb-tooth dam cascade, which set different opening sizes for the dams in concert to specified opening ratios for design optimization; numerical simulations were conducted for the dams and acquired a series of design outcomes, such as mud depth, velocity, and accumulation area with opening ratios(L)of 1, 2 and 3.
(1)At a rainfall frequency of 1%, the maximum mud depth at the Gully mouth reached 11.4 m, with a peak velocity of 16.50 m·s-1, forming a depositional fan with an area of 35.86×104 m2.
(2)The check dam cascade effectively intercepted debris in debris flow body, with the maximum mud depth occurring upstream of the dams. As the opening ratio increased, the duration of debris flow decreased. When the opening ratio set at 1, the debris flow body took an additional 100 seconds to reach the third dam location.
(3)The flow velocity at locations of before and after the dams increased with a larger opening ratio, while the mass of intercepted geo-material upsteam of the dam decreased as opening widths enlarged. As L increased, the function of No.1 dam shifted from interception to diversion, while the interception efficiency at No.2 dam initially increased and then decreased. The main interception roles transitioned from No.1 dam/ No.2 dam to No.2/No.3 dam, with L=3 identified as the optimal opening ratio for the dam cascade in this gully.
This paper systematically explores key parameters affecting the design of permeable debris flow check dam cascade through theoretical analysis and numerical simulations, which would provide technical references for practical engineering project.

参考文献/References:

[1] 钟敦伦, 谢洪. 泥石流灾害及防治技术[M]. 成都: 四川科学技术出版社, 2014: 1-14. [ZHONG Dunlun, XIE Hong. Debris flow disaster and its control technology [M]. Chengdu: Sichuan Science and Technology Press, 2014: 1-14]
[2] 费祥俊, 舒安平. 泥石流运动机理与灾害防治[M]. 北京: 清华大学出版社, 2004: 20-30. [FEI Xiangjun, SHU Anping. Movement mechanism and disaster control for debris flow [M]. Beijing: Tshing Hua University Press, 2004: 20-30]
[3] 张宪政, 铁永波, 宁志杰, 等. 四川汶川县板子沟“6·26”特大型泥石流成因特征与活动性研究[J]. 水文地质工程地质, 2023, 50(5): 134-145. [ZHANG Xianzheng, TIE Yongbo, NING Zhijie, et al. Characteristics and activity analysis of the catastrophic “6.26” debris flow in the Banzi catchment, Wenchuan County of Sichuan Province [J]. Hydrogeology & Engineering Geology, 2023, 50(5): 134-145] DOI: 10.16030/j.cnki.issn.1000-3665.202307003
[4] 康志成, 李焯芬, 马蔼乃, 等. 中国泥石流研究[M]. 北京: 科学出版社, 2004: 24-39. [KANG Zhicheng, LEE Chankfan, MA Ainai, et al. Study on debris flow in China [M]. Beijing: Science Press, 2004: 24-39]
[5] 许强, 李骅锦, 何雨森, 等. 文家沟泥石流治理工程效果的定量分析评价[J]. 工程地质学报, 2017, 25(4): 1046-1056. [XU Qiang, LI Huajin, HE Yusen, et al. Quantitative evaluation of engineering treatments for prevention of debris flow at Wenjia Gully [J]. Journal of Engineering Geology, 2017, 25(4): 1046-1056] DOI: 10.13544/j.cnki.jeg.2017.04.019
[6] 陈晓清, 崔鹏, 游勇, 等. 汶川地震区大型泥石流工程防治体系规划方法探索[J]. 水利学报, 2013, 44(5): 586-593. [CHEN Xiaoqing, CUI Peng, YOU Yong, et al. Layout methods of control works preventing large scale debris flows in Wenchuan earthquake area [J]. Journal of Hydraulic Engineering, 2013, 44(5): 586-593] DOI: 10.13243/j.cnki.slxb.2013.05.003
[7] 孙昊, 游勇, 李道凌, 等. 透过型泥石流拦砂坝工程减灾效果分析[J]. 自然灾害学报, 2023, 32(6): 37-46. [SUN Hao, YOU Yong, LI Daoling, et al. Investigation of effectiveness of open check dams in debris-flow hazards mitigation [J]. Journal of Natural Disasters, 2023, 32(6): 37-46] DOI: 10.13577/j.jnd.2023.0604
[8] OSTI R, EGASHIRA S. Method to improve the mitigative effectiveness of a series of check dams against debris flows [J]. Hydrological Processes, 2008, 22(26): 4986-4996. DOI: 10.1002/hyp.7118
[9] YAZDI J, SABBAGHIAN MOGHADDAM M, SAGHAFIAN B. Optimal design of check dams in mountainous watersheds for flood mitigation [J]. Water Resources Management, 2018, 32: 4793-4811. DOI: 10.1007/s11269-018-2084-4
[10] ABEDINI M, SAID M A M, AHMAD F. Effectiveness of check dam to control soil erosion in a tropical catchment(The Ulu Kinta Basin)[J]. Catena, 2012, 97: 63-70. DOI: 10.1016/j.catena.2021.05.003
[11] 王金水, 陈剑刚, 王喜安, 等. 小流域拦砂坝上下游冲淤特征调查分析[J]. 长江科学院院报, 2024, 41(5): 171-178. [WANG Jinshui, CHEN Jiangang, WANG Xi'an, et al. Investigation and analysis of upstream and downstream erosion and sedimentation characteristics of check dams in small watershed [J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(5): 171-178] DOI: 10.11988/ckyyb.20221624
[12] WU Y H, LIU K F, CHEN Y C. Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study [J]. Journal of Mountain Science, 2013, 10: 293-304. DOI: 10.1007/s11629-013-2511-1
[13] BOCCALI C, CALLIGARIS C, ZINI L, et al. Comparison of scenarios after ten years: The influence of input parameters in Val Canale valley(Friuli Venezia Giulia, Italy)[G]//LOLLINO G, GIORDAN D, CROSTA G B, et al. Engineering Geology for Society and Territory-Volume 2: Landslide Processes. Switzerland: Springer International Publishing, 2015: 525-529. DOI: 10.1007/978-3-319-09057-3-87
[14] 罗超鹏, 常鸣, 武彬彬, 等. 基于FLOW-3D的泥石流龙头运动过程模拟研究[J]. 中国地质灾害与防治学报, 2022, 33(6): 53-62. [LUO Chaopeng, CHANG Ming, WU Binbin, et al. Simulation of debris flow head movement process in mountainous area based on FLOW-3D [J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 53-62] DOI: 10.16031/j.cnki.issn.1003-8035.202107005
[15] 熊冲冲, 胡卸文, 刘丁毅, 等. 基于RAMMS锄头沟泥石流运动过程模拟[J]. 四川地质学报, 2021, 41(1): 107-111+122. [XIONG Chongchong, HU Xiewen, LIU Dingyi, et al. Simulation of debris flow activity in the Chutou Gully based on RAMMS [J]. Acta Geologica Sichuan, 2021, 41(1): 107-111+122] DOI: 10.3969/j.issn.1006-0995.2021.01.022
[16] 杨鑫, 孟华君, 路璐, 等. 基于Massflow的达摩沟泥石流模拟与危险性分析[J]. 人民长江, 2023, 54(8): 146-152. [YANG Xin, MENG Huajun, LU Lu, et al. Numerical simulation and risk analysis of mudslide in Dharma Gully sub-basin based on Massflow [J]. Yangtze River, 2023, 54(8): 146-152] DOI: 10.16232/j.cnki.1001-4179.2023.08.020
[17] 王晓丽, 赵桂香, 李芳. 山西一次区域性暴雨过程的ATOVS资料同化模拟分析[J]. 干旱气象, 2016, 34(3): 522-532. [WANG Xiaoli, ZHAO Guixiang, LI Fang. Analysing effect of variational data assimilation of satellite radiance on a regional heavy rain in Shanxi Province [J]. Journal of Arid Meteorology, 2016, 34(3): 522-532] DOI: 10.11755/j.issn.1006-7639(2016)-03-0522
[18] HAN Zheng, SU Bin, LI Yange, et al. Numerical simulation of debris-flow behavior based on the SPH method incorporating the Herschel-Bulkley-Papanastasiou rheology model [J]. Engineering Geology, 2019, 255: 26-36. DOI: 10.1016/j.enggeo.2019.04.013
[19] LO C M, FENG Zhengyi, CHANG K T. Landslide hazard zoning based on numerical simulation and hazard assessment [J]. Geomatics, Natural Hazards and Risk, 2018, 9(1): 368-388. DOI: 10.1080/19475705.2018.1445662
[20] SALVATICI T, MORELLI S, PAZZI V, et al. Debris flow hazard assessment by means of numerical simulations: Implications for the Rotolon creek valley(Northern Italy)[J]. Journal of Mountain Science, 2017, 14: 636-648. DOI: 10.1007/s11629-016-4197-7
[21] 熊朝正, 吉锋, 石豫川. 基于Massflow模型的青龙沟台风暴雨型泥石流运动特征研究[J]. 人民珠江, 2023, 44(3): 17-22+60. [XIONG Chaozheng, JI Feng, SHI Yuchuan. Movement characteristics of typhoon rainstorm-triggered debris flow in Qinglong Gully based on Massflow model [J]. Pearl River, 2023, 44(3): 17-22+60] DOI: 10.3969/j.issn.1001-9235.2023.03.003
[22] 刘波, 胡卸文, 何坤, 等. 西藏洛隆县巴曲冰湖溃决型泥石流演进过程模拟研究[J]. 水文地质工程地质, 2021, 48(5): 150-160. [LIU Bo, HU Xiewen, HE Kun, et al. Characteristics and evolution process simulation of the Baqu Gully debris flow triggered by ice-lake outburst in Luolong County of Tibet, China [J]. Hydrogeology & Engineering Geology, 2021, 48(5): 150-160] DOI: 10.16030/j.cnki.issn.1000-3665.202103104
[23] WANG Sha, MEI Guodong, XIE Xuyang, et al. The influence of the instantaneous collapse of tailings pond on downstream facilities [J]. Advances in Civil Engineering, 2021, 2021(1): 4253315. DOI: 10.1155/2021/4253315
[24] 刘铁骥, 孙书勤, 赵峥, 等. 基于Massflow模型的冷渍沟泥石流工程治理效果评价[J]. 水利水电技术, 2020, 51(10): 195-201. [LIU Tieji, SUN Shuqin, ZHAO Zheng, et al. Massflow model-based evaluation on effect of engineering treatment of debris flow in Lengzigou Gully [J]. Water Resources and Hydropower Engineering, 2020, 51(10): 195-201] DOI: 10.13928/j.cnki.wrahe.2020.10.024
[25] 唐海兵, 吴建军, 张春山, 等. 涪江源区韩家沟泥石流防治工程改进前后危险性分析[J]. 地质力学学报, 2024, 30(4): 659-672. [TANG Haibing, WU Jianjun, ZHANG Chunshan, et al. Debris flow hazard analysis before and after improvement of Hanjia Gully control engineering at the source area of the Fujiang River [J]. Journal of Geomechanics, 2024, 30(4): 659-672] DOI: 10.12090/j.issn.1006-6616.2023097
[26] 闫崭, 宋英华, 李墨潇, 等. 尾矿库溃坝泥石流多级拦截坝防护效果研究[J]. 中国安全生产科学技术, 2024, 20(1): 11-17. [YAN Zhan, SONG Yinghua, LI Moxiao, et al. Research on protection effect of multi-stage interception dam for dam-break debris flow of tailings pond [J]. Journal of Safety Science and Technology, 2024, 20(1): 11-17] DOI: 10.11731/j.issn.1673-193x.2024.01.002
[27] 毕瑞, 甘淑, 李绕波, 等. 面向东川复杂山地泥石流沟谷三维地形建模及特征分析的无人机遥感探测应用研究[J]. 中国地质灾害与防治学报, 2021, 32(3): 91-100. [BI Rui, GAN Shu, LI Raobo, et al. Application research of unmanned aerial vehicle remote sensing detection for 3D terrain modeling and feature analysis of debris flow gullies in complex mountainous area of Dongchuan [J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 91-100] DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-12
[28] 四川省水利电力厅. 四川省中小流域暴雨洪水计算手册[M]. 成都: 四川省水利电力厅, 1984: 3-17. [Sichuan Provincial Department of Water Resources and Electric Power. Rainstorm flood calculation manual for small and medium basins in Sichuan Province [M]. Chengdu: Sichuan Provincial Department of Water Resources and Electric Power, 1984: 3-17]
[29] 王喜安. 拦砂坝对泥石流沟道冲淤形态的影响[D]. 北京: 中国科学院大学, 2020: 2-4. [WANG Xi'an. The effect of check dam on erosion and deposition of debris flow gully [D]. Beijing: University of Chinese Academy of Sciences, 2020: 2-4] DOI: 10.27525/d.cnki.gkchs.2020.000030
[30] 刘兴荣, 周自强, 董耀刚, 等. 泥石流拦挡坝总坝高设定及坝后淤积计算[J]. 科学技术与工程, 2021, 21(29): 12500-12506. [LIU Xingrong, ZHOU Ziqiang, DONG Yaogang, et al. Design of total dam height and calculation of siltation behind debris flow dam [J]. Science Technology and Engineering, 2021, 21(29): 12500-12506]
[31] T/CAGHP006-2018. 泥石流灾害防治工程勘查规范(试行)[S]. 武汉: 中国地质大学出版社, 2018. [T/CAGHP006-2018. Specification of geological investigation for debris flow stabilization [S]. Wuhan: China University of Geosciences Press, 2018]

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(6):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(6):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(6):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(6):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(6):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(6):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(6):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(6):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(6):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(6):495.

备注/Memo

备注/Memo:
收稿日期(Received date): 2024-11-18; 改回日期(Accepted date):2024-12- 05
基金项目(Foundation item): 国家重点研发计划(2022YFC3002905); 国家自然科学基金(42271092); 中国科学院西部青年学者项目(E2R2180180)。[National Key Research and Development Program of China(2022YFC3002905); National Natural Science Foundation of China(42271092); West Young Scholars Program of the Chinese Academy of Sciences(E2R2180180)]
作者简介(Biography): 刘兆旭(1997-),男,山东聊城人,硕士研究生,主要研究方向:泥石流数值模拟及工程防治。[LIU Zhaoxu(1997-), male, born in Liaocheng, Shandong Province, M.Sc. candidate, research on numerical simulation of debris flow and engineering prevention] E-mail: 798020432@qq.com
*通讯作者(Corresponding author): 苏鹏程(1981-),男,博士,副研究员,主要研究方向:山区高速公路、水电基地及城镇地质灾害评估与工程减灾。[SU Pengcheng(1981-), male, Ph.D., associate professor, research on geological hazard assessment and engineering disaster mitigation for mountain highways, hydropower bases and towns] E-mail: supengcheng@imde.ac.cn
更新日期/Last Update: 2024-11-30