[1]杨钧凯,姜元俊*,阿比尔的,等.密度及粒径差异对冰岩碎屑流分选模式及冲击力的影响[J].山地学报,2024,(6):816-826.[doi:10.16089/j.cnki.1008-2786.000864]
 YANG Junkai,JIANG Yuanjun*,ABI Erdi,et al.Grain Density and Gradation Jointly Regulate the Grain Segregation Patterns and Impact Force Effects in Rock-Ice Debris Flow[J].Mountain Research,2024,(6):816-826.[doi:10.16089/j.cnki.1008-2786.000864]
点击复制

密度及粒径差异对冰岩碎屑流分选模式及冲击力的影响
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第6期
页码:
816-826
栏目:
山地灾害
出版日期:
2024-12-20

文章信息/Info

Title:
Grain Density and Gradation Jointly Regulate the Grain Segregation Patterns and Impact Force Effects in Rock-Ice Debris Flow
文章编号:
1008-2786-(2024)6-816-11
作者:
杨钧凯1姜元俊2*阿比尔的1朱元甲2刘宇桐1
(1. 重庆交通大学 a.国家内河航道整治工程技术研究中心; b.山区公路水运交通地质减灾重庆市教委重点实验室,重庆 400074; 2. 中国科学院、水利部成都山地灾害与环境研究所 山地自然灾害与工程安全重点实验室,成都 610213)
Author(s):
YANG Junkai1JIANG Yuanjun2*ABI Erdi1ZHU Yuanjia2LIU Yutong1
(1. a. National Engineering Research Center for Inland Waterway Regulayion; b. Key Laboratory of Geological DisasterReduction for Highway and Waterway Transportation in Mountainous Areas, Chongqing Municipal Education Commission, Chongqing Jiaotong University, Chongqing 400074, China; 2. Key Laboratory of Mountain Hazards and Engineering Resilience, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Resources, Chengdu 610213, China)
关键词:
冰岩碎屑流 颗粒分选 粒径差异 密度差异 冲击力
Keywords:
rock-ice debris flow particle sorting particle size difference density difference impact force
分类号:
TU432
DOI:
10.16089/j.cnki.1008-2786.000864
文献标志码:
A
摘要:
冰岩碎屑流在运动过程中,因岩石颗粒和冰颗粒之间存在显著的密度差异,产生颗粒分选现象,影响其流动特性和冲击效应,最终改变冰岩碎屑流的致灾性。前期研究多采取室内实验研究的方法,检验单一颗粒性质对颗粒分选的影响,并没有考虑颗粒粒径差异和密度差异对冰岩碎屑流颗粒分选的综合影响。本文采用室内物理模型实验与数值模拟,探究冰岩碎屑流在岩石和冰的粒径及密度差异下的运动过程。由于冰岩碎屑流物质组成的复杂性,本研究假设岩石和冰均为单一、均匀粒径,简化岩石和冰的粒径级配,仅考虑岩石与冰之间的粒径比,分析岩-冰粒径比对颗粒分选模式及冲击力的影响规律。结果表明:(1)岩石和冰的粒径差异能够显著改变颗粒分选模式,形成两种不同的分选模式:大颗粒冰-小颗粒岩石的上层冰-下层岩、前方冰-后方岩模式,以及小颗粒冰-大颗粒岩石的上层岩-下层冰、前方岩-后方冰模式。(2)粒径差异与颗粒的分选程度呈显著正相关,即粒径差异越大,分选程度越高。(3)颗粒分选模式显著影响冰岩碎屑流的冲击力。具体而言,上层冰-下层岩、前方冰-后方岩模式对挡板的冲击力小于上层岩-下层冰、前方岩-后方冰模式,且上层冰-下层岩、前方冰-后方岩的分选模式导致能量耗散更大。本研究可以为揭示冰岩碎屑流的颗粒分选机制及冰岩碎屑流灾害防治提供理论依据。
Abstract:
In the movement of an ice-rock debris flow, it occurs a natural phenomenon of sorting rock particles from ice particles possibly because of sharp distinction in density between ice-grain and rock-grain, which affects its flow behavior and impact effect, and finally alters the catastrophic consequence of an ice-rock debris flow. Most of previous studies took an approach of indoor experiments to examine the effect of single particle properties on particle sorting, but did not consider the combined action of differences in both particle size and density on grain sorting in moving ice-rock debris flows.
In this paper, it used indoor physical modeling experiments and numerical simulations to investigate the motion process of ice-rock debris flow under the density difference between rock and ice particles. Due to the complexity of the material composition of an ice-rock debris flow, this study assumed that both rock and ice were of a single, homogeneous particle size, and considered only the particle size ratio between rock and ice included in the simplified gradation model, and then analyzed the influence law of rock-ice particle size ratio on particle sorting mode and impact force.
(1)The difference in particle size between rock and ice significantly changed particle sorting pattern, resulting in two distinct sorting modes for a ice-rock debris flow body. One mode was of large particle ice in the upper layer with small rock particle in the lower layer in the ice-rock flow body(upper ice-lower rock model), or ice in the front with rock in the rear along an ice-rock flowing body(front ice-rear rock model), whereras another mode was small particle ice in the lower layer with large rock particle in the upper layer(upper rock-lower ice model), or rock in the front with ice in the rear(front rock -rear ice model).
(2)There was a significant positive correlation between the difference in particle size and the degree of sorting of particles, i.e., the larger the difference in particle size, the higher the degree of sorting.
(3)Particle sorting patterns significantly affected the impact force of ice-rock debris flows. Specifically, the upper ice-lower rock model had less impact on a designed retaining wall than the upper rock-lower ice model, and the upper ice-lower rock model and front ice-back rock model acquired greater energy dissipation.
This study provides a theoretical basis for understanding particle sorting mechanism in moving ice-rock debris flow and for the prevention and mitigation efforts.

参考文献/References:

[1] SCHNEIDER D, KAITNA R, DIETRICH W E, et al. Frictional behavior of granular gravel-ice mixtures in vertically rotating drum experiments and implications for rock-ice avalanches [J]. Cold Regions Science and Technology, 2011, 69(1): 70-90. DOI: 1016/j.coldregions.2011.07.001
[2] SOSIO R. Rock-snow-ice avalanches [M]. Boston: Academic Press, 2015: 191-240.
[3] YANG Qingqing, SU Zhiman, CHENG Qiangong, et al. High mobility of rock-ice avalanches: Insights from small flume tests of gravel-ice mixtures [J]. Engineering Geology, 2019, 260: 105260. DOI: 10.1016/j.enggeo.2019.105260
[4] 杨情情, 郑欣玉, 苏志满, 等. 高速远程冰–岩碎屑流研究进展[J]. 地球科学, 2022, 47(3): 935-949. [YANG Qingqing, ZHENG Xinyu, SU Zhiman, et al. Review on rock-ice avalanches [J]. Earth Science, 2022, 47(3): 935-949] DOI: 10.3799/dqkx.2021.158
[5] HUGGEL C. Recent extreme slope failures in glacial environments: Effects of thermal perturbation [J]. Quaternary Science Reviews, 2009, 28(11-12): 1119-1130. DOI: 10.1016/j.quascirev.2008.06.007
[6] FISCHER L, HUGGEL C, KÄÄB A, et al. Slope failures and erosion rates on a glacierized high‐mountain face under climatic changes [J]. Earth Surface Processes and Landforms, 2013, 38(8): 836-846. DOI: 10.1002/esp.3355
[7] KARGEL J S, LEONARD G J, SHUGAR D H, et al. Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake [J]. Science, 2016, 351(6269): aac8353. DOI: 10.1126/science.aac8353
[8] FÉLIX G, THOMAS N. Evidence of two effects in the size segregation process in dry granular media [J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(5): 051307. DOI: 10.1103/PhysRevE.70.051307
[9] PEREIRA G G, CLEARY P W. Segregation due to particle shape of a granular mixture in a slowly rotating tumbler [J]. Granular Matter, 2017, 19(2): 23. DOI: 10.1007/s10035-017-0708-7
[10] ALBABA A, LAMBERT S, NICOT F, et al. Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling [J]. Granular Matter, 2015, 17(5): 603-616. DOI: 10.1007/s10035-015-0579-8
[11] ZHU Yuanjia, JIANG Yuanjun, LIU Yutong, et al. Material characteristic-controlled particle segregation in rock-ice avalanche [J]. Computers and Geotechnics, 2024, 171: 106367. DOI: 10.1016/j.compgeo.2024.106367
[12] FENG Zetao, FAN Xuanmei, NI Tao, et al. How ice particles increase mobility of rock-ice avalanches: Insights from chute flows simulation of granular rock-ice mixtures by discrete element method [J]. Journal of Geophysical Research: Earth Surface, 2023, 128(8): e2023JF007115. DOI: 10.1029/2023JF007115
[13] WANG Chenyang, CUI Yifei, SONG Dongri, et al. Effect of ice content on the interaction between rock-ice avalanche and rigid barrier: Physical and numerical modeling [J]. Computers and Geotechnics, 2022, 150: 104924. DOI: 10.1016/j.compgeo.2022.104924
[14] HUTTER K, KOCH T. Motion of a granular avalanche in an exponentially curved chute: Experiments and theoretical predictions [J]. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 1991, 334(1633): 93-138. DOI: 10.1098/rsta.1991.0004
[15] VALENTINO R, BARLA G, MONTRASIO L. Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests [J]. Rock Mechanics and Rock Engineering, 2008, 41: 153-177. DOI: 10.1007/s00603-006-0126-3
[16] CUNDALL P A. Computer simulations of dense sphere assemblies [J]. Instudies in Applied Mechanics, 1988, 20: 113-123. DOI: 10.1016/B978-0-444-70523-5.50021-7
[17].周公旦, 孙其诚, 崔 鹏. 泥石流颗粒物质分选机理和效应[J]. 四川大学学报(工程科学版), 2013, 45(1): 28-36. [ZHOU Gongdan, SUN Qicheng, CUI Peng. Study on the mechanisms of solids segregation in granular debris flows [J]. Journal of Sichuan University(Engineering Science Edition), 2013, 45(1): 28-36] DOI: 10.15961/j.jsuese.2013.01.005
[18] 季顺迎, 孙其诚, 严颖. 颗粒物质剪切流动的类固-液转化特性及相变图的建立[J]. 中国科学: 物理学, 力学, 天文学, 2011, 41(9): 1112-1125. [JI Shunying, SUN Qicheng, YAN Yin. Characteristics in quasi-solid-liquid phase transition of granular shear flow and its phase diagram [J]. Scientia Sinica Phys, Mech and Astron, 2011, 41(9): 1112-1125] DOI: 10.1360/132011-1064
[19] MOSLET P O. Field testing of uniaxial compression strength of columnar sea ice [J]. Cold Regions Science and Technology, 2007, 48(1): 1-14. DOI: 10.1016/j.coldregions.2006.08.025
[20] MINDLIN R D, DERESIEWICZ H. Elastic spheres in contact under varying oblique forces [J]. Journal of Applied Mechanics, 1953, 20(3): 327-344. DOI: 10.1115/1.4010702
[21] HUNT K H, CROSSLEY F R E. Coefficient of restitution interpreted as damping in vibroimpact [J]. Journal of Applied Mechanics, 1975, 42(2): 440-445. DOI: 10.1115/1.3423596
[22] ELATA D, BERRYMAN J G. Contact force-displacement laws and the mechanical behavior of random packs of identical spheres [J]. Mechanics of Materials, 1996, 24(3): 229-240. DOI: 10.1016/S0167-6636(96)00034-8
[23] AGNOLIN I, ROUX J N. Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks [J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(6): 061302. DOI: 10.1103/PhysRevE.76.061302
[24] 李天话, 樊晓一, 姜元俊. 岩土体颗粒级配对滑坡碎屑流冲击作用的影响研究[J]. 山地学报, 2018, 36(2): 289-297. [LI Tianhua, FAN Xiaoyi, JIANG Yuanjun. Influence of Gradation on the impact effect of landslide debris flow [J]. Mountain Research, 2018, 36(2): 289-297] DOI: 10.16089/j.cnki.1008-2786.000324
[25] JIANG Yuanjun, FAN Xiaoyi, LI Tianhua, et al. Influence of particle-size segregation on the impact of dry granular flow [J]. Powder Technology, 2018, 340: 39-51. DOI: 10.1016/j.powtec.2018.09.014

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 09-28; 改回日期(Accepted data):2024-12-25
基金项目(Foundation item): 国家自然科学基金(42172320)。[National Natural Science Foundation of China(42172320)]
作者简介(Biography): 杨钧凯(1998-),男,河南平顶山人,硕士研究生,主要研究方向:岩土工程与地质灾害防治。[YANG Junkai(1998-), male, born in Pingdingshan, Henan Province, M.Sc. candidate, research on geotechnical engineering and geological disaster prevention] E-mail: yjk0386@163.com
*通讯作者(Corresponding author): 姜元俊(1982-),男,博士,研究员,主要研究方向:岩土工程与地质灾害防治。[JIANG Yuanjun(1982-), male, Ph.D., professor, research on disaster prevention and mitigation engineering] E-mail: yjjiang@imde.ac.cn
更新日期/Last Update: 2024-11-30