参考文献/References:
[1] ZHONG Sining, LI Bin, HOU Bowen, et al. Structure, stability, and potential function of groundwater microbial community responses to permafrost degradation on varying permafrost of the Qinghai-Tibet Plateau [J]. Science of the Total Environment, 2023, 875: 162693. DOI: 10.1016/j.scitotenv.2023.162693
[2] COCHAND M, MOLSON J, LEMIEUX J M. Groundwater hydrogeochemistry in permafrost regions [J]. Permafrost and Periglacial Processes, 2019, 30(2): 90-103. DOI: 10.1002/ppp.1998
[3] WALVOORD M A, KURYLYK B L. Hydrologic impacts of thawing permafrost: A review [J]. Vadose Zone Journal, 2016, 15(6): 1-20. DOI: 10.2136/vzj2016.01.0010
[4] 郭林茂, 王根绪, 宋春林, 等. 多年冻土区下垫面条件对坡面关键水循环过程的影响分析[J]. 水科学进展, 2022, 33(3): 401-415. [GUO Linmao, WANG Genxu, SONG Chunlin, et al. Analysis on the influence of underlying surface conditions in permafrost regions on the key water cycle processes at slope scale [J]. Advances in Water Science, 2022, 33(3): 401-415] DOI: 10.14042/j.cnki.32.1309.2022.03.005
[5] LYU Mingxia, WANG Yibo, GAO Zeyong. The change process of soil hydrological properties in the permafrost active layer of the Qinghai–Tibet Plateau [J]. Catena, 2022, 210: 105938. DOI: 10.1016/j.catena.2021.105938
[6] CHANG Juan, WANG Genxu, MAO Tianxu. Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model [J]. Journal of Hydrology, 2015, 529: 1211-1220. DOI: 10.1016/j.jhydrol.2015.09.038
[7] 常娟, 王根绪, 李春杰, 等. 青藏高原连续多年冻土区的冻结层上水季节动态及其对活动层土壤冻融过程的响应特征[J]. 中国科学: 地球科学, 2015, 45(4): 481-493. [CHANG Juan, WANG Genxu, LI Chunjie, et al. Seasonal dynamics of suprapermafrost groundwater and its response to the freeing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau [J]. Science China: Earth Sciences, 2015, 58: 727-738] DOI: 10.1007/s11430-014-5009-y
[8] 朱亮, 杨明楠, 刘景涛, 等. 多年冻土退化对冻结层上水变化的影响研究—以黄河源区为例[J]. 水文地质工程地质, 2023, 50(6): 3-13. [ZHU Liang, YANG Mingnan, LIU Jingtao, et al. The influence of permafrost degradation on the change of suprapermafrost water: A case study in the source area of the Yellow River [J]. Hydrogeology and Engineering Geology, 2023, 50(6): 3-13] DOI: 10.16030/j.cnki.issn.1000-3665.202303060
[9] 罗贤, 季漩, 李运刚, 等. 怒江流域中上游地表冻融特征及时空分布[J]. 山地学报, 2017, 35(3): 266-273. [LUO Xian, JI Xuan, LI Yungang, et al. Spatial and temporal distribution and variation characteristics of surface freeze/thaw status in the upper and middle Nujiang River basin [J]. Mountain Research, 2017, 35(3): 266-273] DOI: 10.16089/j.cnki.1008-2786.000221
[10] 姜永见, 李世杰, 沈德福, 等. 青藏高原江河源区近40年来气候变化特征及其对区域环境的影响[J]. 山地学报, 2012, 30(4): 461-469. [JIANG Yongjian, LI Shijie, SHEN Defu, et al. Climate change and its impact on the regional environmentin the source regions of the Yangtze, Yellow and Lantsang Rivers in Qinghai-Tibetan Plateau during 1971—2008 [J]. Mountain Research, 2012, 30(4): 461-469] DOI: 10.16089/j.cnki.1008-2786.2012.04.017
[11] 程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40(1): 1-11. [CHENG Guodong, JIN Huijun. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes [J]. Hydrogeology and Engineering Geology, 2013, 40(1): 1-11] DOI: 10.16030/j.cnki.issn.1000-3665.2013.01.017
[12] 廖立轩. 多年冻土区冻结层上水的水热效应对路基稳定性的影响[D]. 北京: 北京交通大学, 2023: 1-95. [LIAO Lixuan. Hydrothermal effect of supra-permafrost groundwater on the stability of subgrade in permafrost region [D]. Beijing: Beijing Jiaotong University, 2023: 1-95] DOI: 10.26944/d.cnki.gbfju.2022.000819
[13] LIU Zejun, FANG Yahong, HU Haiyang, et al. Variation and reason analysis of groundwater hydrochemical characteristics in Beiluhe Basin, Qinghai-Tibet Plateau during a freezing-thawing period [J]. Journal of Water and Climate Change, 2022, 13(7): 2799-2816. DOI: 10.2166/wcc.2022.117
[14] O'CONNOR M T, CARDENAS M B, NEILSON B T, et al. Active layer groundwater flow: The interrelated effects of stratigraphy, thaw, and topography [J]. Water Resources Research, 2019, 55(8): 6555-6576. DOI: 10.1029/2018WR024636
[15] KURYLYK B L, MACQUARRIE K T B, MCKENZIE J M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools [J]. Earth-Science Reviews, 2014, 138: 313-334. DOI: 10.1016/j.earscirev.2014.06.006
[16] 柴明堂, 马巍, 穆彦虎. 冻结层上水的分布及工程影响研究现状与展望[J]. 冰川冻土, 2021, 43(6): 1794-1808. [CHAI Mingtang, MA Wei, MU Yanhu. Distribution and engineering effect of supra-permafrost groundwater: Review and prospect [J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1794-1808] DOI: 10.7522/j.issn.1000-0240.2018.1201
[17] LI Zongxing, LI Zongjie, FENG Qi, et al. Runoff dominated by supra-permafrost water in the source region of the Yangtze river using environmental isotopes [J]. Journal of Hydrology, 2020, 582: 124506. DOI: 10.1016/j.jhydrol.2019.124506
[18] RAUDINA T V, LOIKO S V, LIM A, et al. Permafrost thaw and climate warming may decrease the CO2, carbon, and metal concentration in peat soil waters of the Western Siberia Lowland [J]. Science of the Total Environment, 2018, 634: 1004-1023. DOI: 10.1016/j.scitotenv.2018.04.059
[19] MU Yanhu, MA Wei, LI Guoyu, et al. Impacts of supra-permafrost water ponding and drainage on a railway embankment in continuous permafrost zone, the interior of the Qinghai-Tibet Plateau [J]. Cold Regions Science and Technology, 2018, 154: 23-31. DOI: 10.1016/j.coldregions.2018.06.007
[20] 黄克威, 王根绪, 宋春林, 等. 基于LSTM的青藏高原冻土区典型小流域径流模拟及预测[J]. 冰川冻土, 2021, 43(4): 1144-1156. [HUANG Kewei, WANG Genxu, SONG Chunlin, et al. Runoff simulation and prediction of a typical small watershed in permafrost region of the Qinghai-Tibet Plateau based on LSTM [J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1144-1156] DOI: 10.7522/j.issn.1000-0240.2021.0056
[21] 张方园, 常娟, 刘健, 等. 青藏高原多年冻土区不同海拔土壤含水量对气候变化的响应——基于ELM模型[J]. 冰川冻土, 2023, 45(3): 915-929. [ZHANG Fangyuan, CHANG Juan, LIU Jian, et al. Response of soil water content at different altitudes to climate change in the permafrost region of the Qinghai-Tibet Plateau: An ELM model analysis [J]. Journal of Glaciology and Geocryology, 2023, 45(3): 915-929] DOI: 10.7522/j.issn.1000-0240.2023.0069
[22] DU Yizhen, LI Ren, ZHAO Lin, et al. Evaluation of 11 soil thermal conductivity schemes for the permafrost region of the central Qinghai-Tibet Plateau [J]. Catena, 2020, 193: 104608. DOI: 10.1016/j.catena.2020.104608
[23] LUO Dongliang, WU Qingbai, JIN Huijun, et al. Recent changes in the active layer thickness across the northern hemisphere [J]. Environmental Earth Sciences, 2016, 75(7): 555. DOI: 10.1007/s12665-015-5229-2
[24] WU Qingbai, HOU Yandong, YUN Hanbo, et al. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang(Tibet)Plateau, China [J]. Global and Planetary Change, 2015, 124: 149-155. DOI: 10.1016/j.gloplacha.2014.09.002
[25] WU Tonghua, ZHAO Lin, LI Ren, et al. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau [J]. International Journal of Climatology, 2013, 33(4): 920-930. DOI: 10.1002/joc.3479
[26] LAMONTAGNE-HALLÉ P, MCKENZIE J M, KURYLYK B L, et al. Changing groundwater discharge dynamics in permafrost regions [J]. Environmental Research Letters, 2018, 13(8): 084017. DOI: 10.1088/1748-9326/aad404
[27] WANG Genxu, LI Shengnan, HU Hongchang, et al. Water regime shifts in the active soil layer of the Qinghai-Tibet Plateau permafrost region, under different levels of vegetation [J]. Geoderma, 2009, 149: 280-289. DOI: 10.1016/j.geoderma.2008.12.008
[28] 徐洪亮, 常娟, 郭林茂, 等. 青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J]. 高原气象, 2021, 40(2): 229-243. [XU Hongliang, CHANG Juan, GUO Linmao, et al. Response of thermal-moisture condition within active layer in the hinterland of the Qinghai-Xizang Plateau to climate change [J]. Plateau Meteorology, 2021, 40(2): 229-243] DOI: 10.7522/j.issn. 1000-0534.2020.00071
[29] 赵海鹏. 青藏高原多年冻土区土壤水热变化及其影响因素研究[D]. 兰州: 兰州大学, 2021: 1-59. [ZHAO Haipeng. The variability of hydrothermal characteristics and its influencing factors in permafrost region of Qinghai Tibetan Plateau [D]. Lanzhou: Lanzhou University, 2021: 1-59] DOI: 10.27204/d.cnki.glzhu.2021.001768
[30] CHANG Juan, ZHANG Fangyuan, WANG Genxu, et al. Spatiotemporal heterogeneity of suprapermafrost groundwater dynamic processes in the permafrost region of the Qinghai-Tibet Plateau [J]. Catena, 2024, 239: 107911. DOI: 10.1016/j.catena.2024.107911
[31] GAO Zeyong, NIU Fujun, WANG Yibo, et al. Suprapermafrost groundwater flow and exchange around a thermokarst lake on the Qinghai-Tibet Plateau, China [J]. Journal of Hydrology, 2021, 593: 125882. DOI: 10.1016/j.jhydrol.2020.125882
[32] GUI Juan, LI Zongxing, XUE Jian, et al. The effect of freeze-thaw action on the dynamic change of supra-permafrost water sources: A stable isotope perspective [J]. Journal of Environmental Management, 2024, 356: 120536. DOI: 10.1016/j.jenvman.2024.120536
[33] PAN Xicai, YU Qihao, YOU Yanhui, et al. Contribution of supra-permafrost discharge to thermokarst lake water balances on the northeastern Qinghai-Tibet Plateau [J]. Journal of Hydrology, 2017, 555: 621-630. DOI: 10.1016/j.jhydrol.2017.10.046
[34] HUANG Kewei, DAI Junchen, WANG Genxu, et al. The impact of land surface temperatures on suprapermafrost groundwater on the central Qinghai-Tibet Plateau [J]. Hydrological Processes, 2019, 34(6): 1475-1488. DOI: 10.1002/hyp.13677
[35] 乔广超, 杨明祥, 刘琦, 等. 基于PSO-SVR-ANN的丹江口水库秋汛期月尺度径流预报模型[J]. 水利水电技术(中英文), 2021, 52(4): 69-78. [QIAO Guangchao, YANG Mingxiang, LIU Qi, et al. Monthly runoff forecast model of Danjiangkou Reservoir in autumn flood season based on PSO-SVR-ANN [J]. Water Resources and Hydropower Engineering, 2021, 52(4): 69-78] DOI: 10.13928/j.cnki.wrahe.2021.04.007
[36] SEPP H, SCHMIDHUBER J. Long-short term memory [J]. Neural Comput, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.1735
[37] CHEN Yiqing, CHEN Zongzhu, LI Kang, et al. Research of carbon emission prediction: An oscillatory particle swarm optimization for long short-term memory [J]. Processes, 2023, 11(10): 3011. DOI: 10.3390/pr11103011
[38] KIM G B, HWANG C I, CHOI M R. PCA-based multivariate LSTM model for predicting natural groundwater level variations in a time-series record affected by anthropogenic factors [J]. Environmental Earth Sciences, 2021, 80(18): 657. DOI: 10.1007/s12665-021-09957-0
[39] SONG Chunlin, WANG Genxu, HU Zhaoyong, et al. Net ecosystem carbon budget of a grassland ecosystem in central Qinghai-Tibet Plateau: Integrating terrestrial and aquatic carbon fluxes at catchment scale [J]. Agricultural and Forest Meteorology, 2020, 290: 108021. DOI: 10.1016/j.agrformet.2020.108021
[40] HUANG Wenfeng, ZHANG Jinrong, LEPPÄRANTA M, et al. Thermal structure and water-ice heat transfer in a shallow ice-covered thermokarst lake in central Qinghai-Tibet Plateau [J]. Journal of Hydrology, 2019, 578: 124122. DOI: 10.1016/j.jhydrol.2019.124122
[41] 徐马强, 庞文龙, 张震, 等.三江源地区近地表土壤冻融时空变化[J]. 山地学报, 2024, 42(3): 347-358. [XU Maqiang, PANG Wenlong, ZHANG Zhen, et al. Spatio-temporal variation of freezing-thawing state of near surface soil in the Three-Rivers Headwater region of Tibetan Plateau, China [J]. Mountain Research, 2024, 42(3): 347-358] DOI: 10.16089/j.cnki.1008-2786.000828
[42] 刘健, 翁学礼, 常娟, 等. 青藏高原风火山流域多年冻土活动层土壤水分入渗特征及变化分析[J]. 冰川冻土, 2024, 46(1): 312-324. [LIU Jian, WENG Xueli, CHANG Juan, et al. Analysis of infiltration characteristics and variations of soil moisture in the active layer of permafrost in Fenghuoshan basin, Qinghai-Tibet Plateau [J]. Journal of Glaciology and Geocryology, 2024, 46(1): 312-324] DOI: 10.7522/j.issn.1000-0240.2024.0026
[43] 肖锦旺, 王根绪, 胡兆永, 等. 多年冻土区高寒草甸蒸散发模型适用性评价——以青藏高原风火山地区为例[J]. 冰川冻土, 2023, 45(5): 1629-1639. [XIAO Jinwang, WANG Genxu, HU Zhaoyong, et al. Application evaluation of evapotranspiration models for an alpine meadow in permafrost region: A case study of Fenghuoshan area in the Qinghai-Xizang Plateau [J]. Journal of Glaciology and Geocryology, 2023, 45(5): 1629-1639] DOI: 10.7522/j.issn.1000-0240.2023.0124
[44] 张文旭, 王根绪, 胡兆永. 三种蒸散发测算方法的比较——以青藏高原风火山地区为例[J]. 冰川冻土, 2023, 45(1): 130-139. [ZHANG Wenxu, WANG Genxu, HU Zhaoyong. Comparison of three evapotranspiration calculation methods: A case study of Fenghuoshan area in Qinghai-Tibet Plateau [J]. Journal of Glaciology and Geocryology, 2023, 45(1): 130-139] DOI: 10.7522/j.issn.1000-0240.2023.0009
[45] 代军臣. 青藏高原长江源区多年冻土区冻结层上水研究[D]. 成都: 中国科学院大学, 2019: 1-73. [DAI Junchen. Study on the dynamics of the suprapermafrost groundwater in Yangtze River Source Area on the Qinghai-Tibet Plateau [D]. Chengdu: University of Chinese Academy of Sciences, 2019: 1-73]
[46] 叶仁政. 青藏高原腹地多年冻土区活动层冻融过程对冻结层上水动态变化的影响[D]. 兰州: 兰州大学, 2019: 1-42. [YE Renzheng. Effect of active layer freeze-thaw process on the dynamic of supra-permafrost groundwater in the permafrost region of the Qinghai-Tibet Plateau heartland [D]. Lanzhou: Lanzhou University, 2019: 1-42]
[47] 王伟, 蔡文生, 邓科. 利用最小二乘法拟合水位流量关系曲线探讨[J]. 陕西水利, 2021(11): 51-52+58. [WANG Wei, CAI Wensheng, DENG Ke. Exploring the water level-flow relationship curve fitting using least squares method [J]. Shaanxi Water Resources, 2021(11): 51-52+58] DOI: 10.16747/j.cnki.cn61-1109/tv.2021.11.017
[48] 兰芝梅, 朱咏, 陈学林. 历年综合水位—流量关系曲线拟合方法分析[J]. 陕西水利, 2022(5): 36-38+41. [LAN Zhimei, ZHU Yong, CHEN Xuelin. Analysis on fitting method of comprehensive water level discharge relation curve over the years [J]. Shaanxi Water Resources, 2022(5): 36-38+41] DOI: 10.16747/j.cnki.cn61-1109/tv.2022.05.061
[49] SANG Shuai, LI Lu. A novel variant of LSTM stock prediction method incorporating attention mechanism [J]. Mathematics, 2024, 12(7): 945. DOI: 10.3390/math12070945
[50] MAJEED M A, SHAFRI H Z M, ZULKAFLI Z, et al. A deep learning approach for dengue fever prediction in Malaysia using LSTM with spatial attention [J]. International Journal of Environmental Research and Public Health, 2023, 20(5): 4130. DOI: 10.3390/ijerph20054130
[51] WANG Genxu, LI Yuanshou, HU Hongchang, et al. Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai-Tibet [J]. Hydrological Processes, 2008, 22(17): 3310-3320. DOI: 10.1002/hyp.6913
[52] 代彬, 郭巧玲, 陈梓楹, 等. 乌兰木伦河流域地下水水化学同位素特征及补给关系[J]. 水资源与水工程学报, 2023, 34(4): 15-22. [DAI Bin, GUO Qiaoling, CHEN Ziying, et al. Groundwater isotope hydrochemical characteristics and the interactions between precipitation river and ground water in the Wulanmulun River Basin [J]. Journal of Water Resources & Water Engineering, 2023, 34(4): 15-22] DOI: 10.11705/j.issn.1672-643X.2023.04.03
[53] 程国栋. 厚层地下冰的形成过程[J]. 中国科学(B辑 化学 生物学 农学 医学 地学), 1982(3): 281-288. [CHENG Guodong. The formation process of thick ground ice [J]. Science in China(Series B: Chemistry Biology Agronomy Medicine Geoscience), 1982(3): 281-288]