[1]邹 禧a,王根绪b*,吴碧琼,等.多年冻土区冻结层上水动态及模拟——以青藏高原风火山流域为例[J].山地学报,2025,(1):28-45.[doi:10.16089/j.cnki.1008-2786.000874]
 ZOU Xia,WANG Genxub*,WU Biqiong,et al.Dynamics and Simulation of Suprapermafrost Water in Permafrost Regions:A Case Study of the Fenghuoshan Watershed on the Qinghai-Tibetan Plateau[J].Mountain Research,2025,(1):28-45.[doi:10.16089/j.cnki.1008-2786.000874]
点击复制

多年冻土区冻结层上水动态及模拟——以青藏高原风火山流域为例()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第1期
页码:
28-45
栏目:
山地环境
出版日期:
2025-02-20

文章信息/Info

Title:
Dynamics and Simulation of Suprapermafrost Water in Permafrost Regions:A Case Study of the Fenghuoshan Watershed on the Qinghai-Tibetan Plateau
文章编号:
1008-2786-(20251-028-18)
作者:
邹 禧1a王根绪1b*吴碧琼2宋春林1b郭林茂1b李金龙1a
(1. 四川大学 a.水利水电学院; b.山区河流保护与治理全国重点实验室,成都 610065; 2. 中国长江电力股份有限公司,湖北 宜昌 443002)
Author(s):
ZOU Xi1a WANG Genxu1b* WU Biqiong2 SONG Chunlin1b GUO Linmao1b LI Jinlong1a
(1. a. College of Water Resource & Hydropower; b. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065; 2. China Yangtze Power Co., Ltd., Yichang 443002, Hubei, China)
关键词:
多年冻土 冻结层上水 土壤温湿度 地下水位模拟 LSTM
Keywords:
permafrost suprapermafrost water soil temperature/moisture simulation of groundwater table LSTM
分类号:
P642.1
DOI:
10.16089/j.cnki.1008-2786.000874
文献标志码:
A
摘要:
冻结层上水是寒区冻土水文循环的关键层,揭示其动态演变规律,对认知冻土区地下水运移机制及精准预测具有重要科学意义。然而,由于多年冻土区原位监测数据的匮乏,以及非线性适应型水文过程模型构建的缺失,冻结层上水动态时空预测精度难以满足科学研究和工程实践需求。本研究以青藏高原风火山小流域(海拔4063~5398 m)为典型研究区,基于2021—2023年原位观测气象数据(精度±0.1 ℃/±0.1 mm)、逐日土壤水热(精度±1 ℃/±0.03 m3?m-3)及冻结层上水位(精度±0.14 cm)原位监测数据,揭示坡面尺度冻结层上水动态的水热时空协同机制; 集成气温、降水、土壤温湿度和初始水位等多要素,构建及评估基于长短期记忆神经网络(LSTM)的冻土水文预测模型的适应性。研究发现:(1)冻结层上水动态具有显著季节分异特征,其水位波动(年变幅0~1.53 m)与活动层土壤温湿度呈现一致性,基于Boltzmann函数的平均拟合优度为0.90。(2)所构建的基于LSTM方法的冻结层上水位预测模型(学习率0.002)在坡面多梯度验证中表现出卓越性能,平均纳什效率系数(NSE)为0.83,证实模型具备复杂冻土水文过程的解析能力。(3)模型敏感性分析表明,在仅采用气温、降雨和初始水位作为输入的基准情景下,模型仍能维持0.72的NSE值,土壤温湿度参数的引入使模拟精度平均提升8.9%,这为数据稀缺区提供了可靠的简化预测方案。本研究提出的多要素耦合建模方法,克服了传统水文模型的物理机制限制,可以为多年冻土区水资源管理与生态水文系统稳定性提供可靠的技术支撑。
Abstract:
Suprapermafrost water, a crucial layer in the hydrological cycle of permafrost regions, plays a pivotal role in deciphering groundwater dynamics and enabling reliable predictions in permafrost environments. However, limited by the lack of in-situ monitoring data of suprapermafrost water in the Qinghai-Tibetan Plateau and the absence of robust mathematical frameworks tailored to permafrost hydrogeology, the accuracy of spatio-temporal predictions for suprapermafrost water dynamics is insufficient to meet the needs of scientific research and engineering practice.
In this study, it selected the Fenghuoshan watershed(altitude: 4063-5398 m), a representative permafrost region on the Qinghai-Tibetan Plateau, as research target. It utilized in-situ meteorological data(accuracy: ±0.1 ℃/±0.1 mm), daily soil water-heat(accuracy: ±1 ℃/±0.03 m3·m-3), and suprapermafrost water table(resolution: ±0.14 cm)monitoring data in the period of 2021-2023 to intepret the spatio-temporal interactions and spatial heterogeneity of the three variables at the hillslope scale. Multiple factors such as air temperature, precipitation, soil temperature-humidity, and initial water table were integrated into a permafrost hydrological prediction model based on the Long Short-Term Memory(LSTM)neural network, with its adaptability evaluated.
(1)Supra-permafrost water tables exhibited pronounced seasonal variability, synchronized with intra-annual fluctuations of soil temperature/moisture in active-layer. A Boltzmann function-based model effectively captured phase transition dynamics during freeze-thaw cycles, achieving a mean goodness-of-fit of 0.90.
(2)A novel Long Short-Term Memory(LSTM)neural network model, specifically optimized for permafrost hydrology, demonstrated exceptional predictive capability across diverse slope positions. The model attained an average Nash-Sutcliffe efficiency coefficient(NSE)of 0.82.
(3)Sensitivity analysis revealed that the model maintained an NSE of 0.72 using only temperature, precipitation, and initial water tables as inputs. Incorporating soil hydrothermal parameters enhanced simulation accuracy by an average of 8.9%, offering a practical solution for data-scarce permafrost regions.
The proposed multi-factor input modeling framework overcomes the physical limitations of conventional hydrological models, offering a robust technical tool for water resource management and ecohydrological system stability in plateau permafrost regions.

参考文献/References:

[1] ZHONG Sining, LI Bin, HOU Bowen, et al. Structure, stability, and potential function of groundwater microbial community responses to permafrost degradation on varying permafrost of the Qinghai-Tibet Plateau [J]. Science of the Total Environment, 2023, 875: 162693. DOI: 10.1016/j.scitotenv.2023.162693
[2] COCHAND M, MOLSON J, LEMIEUX J M. Groundwater hydrogeochemistry in permafrost regions [J]. Permafrost and Periglacial Processes, 2019, 30(2): 90-103. DOI: 10.1002/ppp.1998
[3] WALVOORD M A, KURYLYK B L. Hydrologic impacts of thawing permafrost: A review [J]. Vadose Zone Journal, 2016, 15(6): 1-20. DOI: 10.2136/vzj2016.01.0010
[4] 郭林茂, 王根绪, 宋春林, 等. 多年冻土区下垫面条件对坡面关键水循环过程的影响分析[J]. 水科学进展, 2022, 33(3): 401-415. [GUO Linmao, WANG Genxu, SONG Chunlin, et al. Analysis on the influence of underlying surface conditions in permafrost regions on the key water cycle processes at slope scale [J]. Advances in Water Science, 2022, 33(3): 401-415] DOI: 10.14042/j.cnki.32.1309.2022.03.005
[5] LYU Mingxia, WANG Yibo, GAO Zeyong. The change process of soil hydrological properties in the permafrost active layer of the Qinghai–Tibet Plateau [J]. Catena, 2022, 210: 105938. DOI: 10.1016/j.catena.2021.105938
[6] CHANG Juan, WANG Genxu, MAO Tianxu. Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model [J]. Journal of Hydrology, 2015, 529: 1211-1220. DOI: 10.1016/j.jhydrol.2015.09.038
[7] 常娟, 王根绪, 李春杰, 等. 青藏高原连续多年冻土区的冻结层上水季节动态及其对活动层土壤冻融过程的响应特征[J]. 中国科学: 地球科学, 2015, 45(4): 481-493. [CHANG Juan, WANG Genxu, LI Chunjie, et al. Seasonal dynamics of suprapermafrost groundwater and its response to the freeing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau [J]. Science China: Earth Sciences, 2015, 58: 727-738] DOI: 10.1007/s11430-014-5009-y
[8] 朱亮, 杨明楠, 刘景涛, 等. 多年冻土退化对冻结层上水变化的影响研究—以黄河源区为例[J]. 水文地质工程地质, 2023, 50(6): 3-13. [ZHU Liang, YANG Mingnan, LIU Jingtao, et al. The influence of permafrost degradation on the change of suprapermafrost water: A case study in the source area of the Yellow River [J]. Hydrogeology and Engineering Geology, 2023, 50(6): 3-13] DOI: 10.16030/j.cnki.issn.1000-3665.202303060
[9] 罗贤, 季漩, 李运刚, 等. 怒江流域中上游地表冻融特征及时空分布[J]. 山地学报, 2017, 35(3): 266-273. [LUO Xian, JI Xuan, LI Yungang, et al. Spatial and temporal distribution and variation characteristics of surface freeze/thaw status in the upper and middle Nujiang River basin [J]. Mountain Research, 2017, 35(3): 266-273] DOI: 10.16089/j.cnki.1008-2786.000221
[10] 姜永见, 李世杰, 沈德福, 等. 青藏高原江河源区近40年来气候变化特征及其对区域环境的影响[J]. 山地学报, 2012, 30(4): 461-469. [JIANG Yongjian, LI Shijie, SHEN Defu, et al. Climate change and its impact on the regional environmentin the source regions of the Yangtze, Yellow and Lantsang Rivers in Qinghai-Tibetan Plateau during 1971—2008 [J]. Mountain Research, 2012, 30(4): 461-469] DOI: 10.16089/j.cnki.1008-2786.2012.04.017
[11] 程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40(1): 1-11. [CHENG Guodong, JIN Huijun. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes [J]. Hydrogeology and Engineering Geology, 2013, 40(1): 1-11] DOI: 10.16030/j.cnki.issn.1000-3665.2013.01.017
[12] 廖立轩. 多年冻土区冻结层上水的水热效应对路基稳定性的影响[D]. 北京: 北京交通大学, 2023: 1-95. [LIAO Lixuan. Hydrothermal effect of supra-permafrost groundwater on the stability of subgrade in permafrost region [D]. Beijing: Beijing Jiaotong University, 2023: 1-95] DOI: 10.26944/d.cnki.gbfju.2022.000819
[13] LIU Zejun, FANG Yahong, HU Haiyang, et al. Variation and reason analysis of groundwater hydrochemical characteristics in Beiluhe Basin, Qinghai-Tibet Plateau during a freezing-thawing period [J]. Journal of Water and Climate Change, 2022, 13(7): 2799-2816. DOI: 10.2166/wcc.2022.117
[14] O'CONNOR M T, CARDENAS M B, NEILSON B T, et al. Active layer groundwater flow: The interrelated effects of stratigraphy, thaw, and topography [J]. Water Resources Research, 2019, 55(8): 6555-6576. DOI: 10.1029/2018WR024636
[15] KURYLYK B L, MACQUARRIE K T B, MCKENZIE J M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools [J]. Earth-Science Reviews, 2014, 138: 313-334. DOI: 10.1016/j.earscirev.2014.06.006
[16] 柴明堂, 马巍, 穆彦虎. 冻结层上水的分布及工程影响研究现状与展望[J]. 冰川冻土, 2021, 43(6): 1794-1808. [CHAI Mingtang, MA Wei, MU Yanhu. Distribution and engineering effect of supra-permafrost groundwater: Review and prospect [J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1794-1808] DOI: 10.7522/j.issn.1000-0240.2018.1201
[17] LI Zongxing, LI Zongjie, FENG Qi, et al. Runoff dominated by supra-permafrost water in the source region of the Yangtze river using environmental isotopes [J]. Journal of Hydrology, 2020, 582: 124506. DOI: 10.1016/j.jhydrol.2019.124506
[18] RAUDINA T V, LOIKO S V, LIM A, et al. Permafrost thaw and climate warming may decrease the CO2, carbon, and metal concentration in peat soil waters of the Western Siberia Lowland [J]. Science of the Total Environment, 2018, 634: 1004-1023. DOI: 10.1016/j.scitotenv.2018.04.059
[19] MU Yanhu, MA Wei, LI Guoyu, et al. Impacts of supra-permafrost water ponding and drainage on a railway embankment in continuous permafrost zone, the interior of the Qinghai-Tibet Plateau [J]. Cold Regions Science and Technology, 2018, 154: 23-31. DOI: 10.1016/j.coldregions.2018.06.007
[20] 黄克威, 王根绪, 宋春林, 等. 基于LSTM的青藏高原冻土区典型小流域径流模拟及预测[J]. 冰川冻土, 2021, 43(4): 1144-1156. [HUANG Kewei, WANG Genxu, SONG Chunlin, et al. Runoff simulation and prediction of a typical small watershed in permafrost region of the Qinghai-Tibet Plateau based on LSTM [J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1144-1156] DOI: 10.7522/j.issn.1000-0240.2021.0056
[21] 张方园, 常娟, 刘健, 等. 青藏高原多年冻土区不同海拔土壤含水量对气候变化的响应——基于ELM模型[J]. 冰川冻土, 2023, 45(3): 915-929. [ZHANG Fangyuan, CHANG Juan, LIU Jian, et al. Response of soil water content at different altitudes to climate change in the permafrost region of the Qinghai-Tibet Plateau: An ELM model analysis [J]. Journal of Glaciology and Geocryology, 2023, 45(3): 915-929] DOI: 10.7522/j.issn.1000-0240.2023.0069
[22] DU Yizhen, LI Ren, ZHAO Lin, et al. Evaluation of 11 soil thermal conductivity schemes for the permafrost region of the central Qinghai-Tibet Plateau [J]. Catena, 2020, 193: 104608. DOI: 10.1016/j.catena.2020.104608
[23] LUO Dongliang, WU Qingbai, JIN Huijun, et al. Recent changes in the active layer thickness across the northern hemisphere [J]. Environmental Earth Sciences, 2016, 75(7): 555. DOI: 10.1007/s12665-015-5229-2
[24] WU Qingbai, HOU Yandong, YUN Hanbo, et al. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang(Tibet)Plateau, China [J]. Global and Planetary Change, 2015, 124: 149-155. DOI: 10.1016/j.gloplacha.2014.09.002
[25] WU Tonghua, ZHAO Lin, LI Ren, et al. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau [J]. International Journal of Climatology, 2013, 33(4): 920-930. DOI: 10.1002/joc.3479
[26] LAMONTAGNE-HALLÉ P, MCKENZIE J M, KURYLYK B L, et al. Changing groundwater discharge dynamics in permafrost regions [J]. Environmental Research Letters, 2018, 13(8): 084017. DOI: 10.1088/1748-9326/aad404
[27] WANG Genxu, LI Shengnan, HU Hongchang, et al. Water regime shifts in the active soil layer of the Qinghai-Tibet Plateau permafrost region, under different levels of vegetation [J]. Geoderma, 2009, 149: 280-289. DOI: 10.1016/j.geoderma.2008.12.008
[28] 徐洪亮, 常娟, 郭林茂, 等. 青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J]. 高原气象, 2021, 40(2): 229-243. [XU Hongliang, CHANG Juan, GUO Linmao, et al. Response of thermal-moisture condition within active layer in the hinterland of the Qinghai-Xizang Plateau to climate change [J]. Plateau Meteorology, 2021, 40(2): 229-243] DOI: 10.7522/j.issn. 1000-0534.2020.00071
[29] 赵海鹏. 青藏高原多年冻土区土壤水热变化及其影响因素研究[D]. 兰州: 兰州大学, 2021: 1-59. [ZHAO Haipeng. The variability of hydrothermal characteristics and its influencing factors in permafrost region of Qinghai Tibetan Plateau [D]. Lanzhou: Lanzhou University, 2021: 1-59] DOI: 10.27204/d.cnki.glzhu.2021.001768
[30] CHANG Juan, ZHANG Fangyuan, WANG Genxu, et al. Spatiotemporal heterogeneity of suprapermafrost groundwater dynamic processes in the permafrost region of the Qinghai-Tibet Plateau [J]. Catena, 2024, 239: 107911. DOI: 10.1016/j.catena.2024.107911
[31] GAO Zeyong, NIU Fujun, WANG Yibo, et al. Suprapermafrost groundwater flow and exchange around a thermokarst lake on the Qinghai-Tibet Plateau, China [J]. Journal of Hydrology, 2021, 593: 125882. DOI: 10.1016/j.jhydrol.2020.125882
[32] GUI Juan, LI Zongxing, XUE Jian, et al. The effect of freeze-thaw action on the dynamic change of supra-permafrost water sources: A stable isotope perspective [J]. Journal of Environmental Management, 2024, 356: 120536. DOI: 10.1016/j.jenvman.2024.120536
[33] PAN Xicai, YU Qihao, YOU Yanhui, et al. Contribution of supra-permafrost discharge to thermokarst lake water balances on the northeastern Qinghai-Tibet Plateau [J]. Journal of Hydrology, 2017, 555: 621-630. DOI: 10.1016/j.jhydrol.2017.10.046
[34] HUANG Kewei, DAI Junchen, WANG Genxu, et al. The impact of land surface temperatures on suprapermafrost groundwater on the central Qinghai-Tibet Plateau [J]. Hydrological Processes, 2019, 34(6): 1475-1488. DOI: 10.1002/hyp.13677
[35] 乔广超, 杨明祥, 刘琦, 等. 基于PSO-SVR-ANN的丹江口水库秋汛期月尺度径流预报模型[J]. 水利水电技术(中英文), 2021, 52(4): 69-78. [QIAO Guangchao, YANG Mingxiang, LIU Qi, et al. Monthly runoff forecast model of Danjiangkou Reservoir in autumn flood season based on PSO-SVR-ANN [J]. Water Resources and Hydropower Engineering, 2021, 52(4): 69-78] DOI: 10.13928/j.cnki.wrahe.2021.04.007
[36] SEPP H, SCHMIDHUBER J. Long-short term memory [J]. Neural Comput, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.1735
[37] CHEN Yiqing, CHEN Zongzhu, LI Kang, et al. Research of carbon emission prediction: An oscillatory particle swarm optimization for long short-term memory [J]. Processes, 2023, 11(10): 3011. DOI: 10.3390/pr11103011
[38] KIM G B, HWANG C I, CHOI M R. PCA-based multivariate LSTM model for predicting natural groundwater level variations in a time-series record affected by anthropogenic factors [J]. Environmental Earth Sciences, 2021, 80(18): 657. DOI: 10.1007/s12665-021-09957-0
[39] SONG Chunlin, WANG Genxu, HU Zhaoyong, et al. Net ecosystem carbon budget of a grassland ecosystem in central Qinghai-Tibet Plateau: Integrating terrestrial and aquatic carbon fluxes at catchment scale [J]. Agricultural and Forest Meteorology, 2020, 290: 108021. DOI: 10.1016/j.agrformet.2020.108021
[40] HUANG Wenfeng, ZHANG Jinrong, LEPPÄRANTA M, et al. Thermal structure and water-ice heat transfer in a shallow ice-covered thermokarst lake in central Qinghai-Tibet Plateau [J]. Journal of Hydrology, 2019, 578: 124122. DOI: 10.1016/j.jhydrol.2019.124122
[41] 徐马强, 庞文龙, 张震, 等.三江源地区近地表土壤冻融时空变化[J]. 山地学报, 2024, 42(3): 347-358. [XU Maqiang, PANG Wenlong, ZHANG Zhen, et al. Spatio-temporal variation of freezing-thawing state of near surface soil in the Three-Rivers Headwater region of Tibetan Plateau, China [J]. Mountain Research, 2024, 42(3): 347-358] DOI: 10.16089/j.cnki.1008-2786.000828
[42] 刘健, 翁学礼, 常娟, 等. 青藏高原风火山流域多年冻土活动层土壤水分入渗特征及变化分析[J]. 冰川冻土, 2024, 46(1): 312-324. [LIU Jian, WENG Xueli, CHANG Juan, et al. Analysis of infiltration characteristics and variations of soil moisture in the active layer of permafrost in Fenghuoshan basin, Qinghai-Tibet Plateau [J]. Journal of Glaciology and Geocryology, 2024, 46(1): 312-324] DOI: 10.7522/j.issn.1000-0240.2024.0026
[43] 肖锦旺, 王根绪, 胡兆永, 等. 多年冻土区高寒草甸蒸散发模型适用性评价——以青藏高原风火山地区为例[J]. 冰川冻土, 2023, 45(5): 1629-1639. [XIAO Jinwang, WANG Genxu, HU Zhaoyong, et al. Application evaluation of evapotranspiration models for an alpine meadow in permafrost region: A case study of Fenghuoshan area in the Qinghai-Xizang Plateau [J]. Journal of Glaciology and Geocryology, 2023, 45(5): 1629-1639] DOI: 10.7522/j.issn.1000-0240.2023.0124
[44] 张文旭, 王根绪, 胡兆永. 三种蒸散发测算方法的比较——以青藏高原风火山地区为例[J]. 冰川冻土, 2023, 45(1): 130-139. [ZHANG Wenxu, WANG Genxu, HU Zhaoyong. Comparison of three evapotranspiration calculation methods: A case study of Fenghuoshan area in Qinghai-Tibet Plateau [J]. Journal of Glaciology and Geocryology, 2023, 45(1): 130-139] DOI: 10.7522/j.issn.1000-0240.2023.0009
[45] 代军臣. 青藏高原长江源区多年冻土区冻结层上水研究[D]. 成都: 中国科学院大学, 2019: 1-73. [DAI Junchen. Study on the dynamics of the suprapermafrost groundwater in Yangtze River Source Area on the Qinghai-Tibet Plateau [D]. Chengdu: University of Chinese Academy of Sciences, 2019: 1-73]
[46] 叶仁政. 青藏高原腹地多年冻土区活动层冻融过程对冻结层上水动态变化的影响[D]. 兰州: 兰州大学, 2019: 1-42. [YE Renzheng. Effect of active layer freeze-thaw process on the dynamic of supra-permafrost groundwater in the permafrost region of the Qinghai-Tibet Plateau heartland [D]. Lanzhou: Lanzhou University, 2019: 1-42]
[47] 王伟, 蔡文生, 邓科. 利用最小二乘法拟合水位流量关系曲线探讨[J]. 陕西水利, 2021(11): 51-52+58. [WANG Wei, CAI Wensheng, DENG Ke. Exploring the water level-flow relationship curve fitting using least squares method [J]. Shaanxi Water Resources, 2021(11): 51-52+58] DOI: 10.16747/j.cnki.cn61-1109/tv.2021.11.017
[48] 兰芝梅, 朱咏, 陈学林. 历年综合水位—流量关系曲线拟合方法分析[J]. 陕西水利, 2022(5): 36-38+41. [LAN Zhimei, ZHU Yong, CHEN Xuelin. Analysis on fitting method of comprehensive water level discharge relation curve over the years [J]. Shaanxi Water Resources, 2022(5): 36-38+41] DOI: 10.16747/j.cnki.cn61-1109/tv.2022.05.061
[49] SANG Shuai, LI Lu. A novel variant of LSTM stock prediction method incorporating attention mechanism [J]. Mathematics, 2024, 12(7): 945. DOI: 10.3390/math12070945
[50] MAJEED M A, SHAFRI H Z M, ZULKAFLI Z, et al. A deep learning approach for dengue fever prediction in Malaysia using LSTM with spatial attention [J]. International Journal of Environmental Research and Public Health, 2023, 20(5): 4130. DOI: 10.3390/ijerph20054130
[51] WANG Genxu, LI Yuanshou, HU Hongchang, et al. Synergistic effect of vegetation and air temperature changes on soil water content in alpine frost meadow soil in the permafrost region of Qinghai-Tibet [J]. Hydrological Processes, 2008, 22(17): 3310-3320. DOI: 10.1002/hyp.6913
[52] 代彬, 郭巧玲, 陈梓楹, 等. 乌兰木伦河流域地下水水化学同位素特征及补给关系[J]. 水资源与水工程学报, 2023, 34(4): 15-22. [DAI Bin, GUO Qiaoling, CHEN Ziying, et al. Groundwater isotope hydrochemical characteristics and the interactions between precipitation river and ground water in the Wulanmulun River Basin [J]. Journal of Water Resources & Water Engineering, 2023, 34(4): 15-22] DOI: 10.11705/j.issn.1672-643X.2023.04.03
[53] 程国栋. 厚层地下冰的形成过程[J]. 中国科学(B辑 化学 生物学 农学 医学 地学), 1982(3): 281-288. [CHENG Guodong. The formation process of thick ground ice [J]. Science in China(Series B: Chemistry Biology Agronomy Medicine Geoscience), 1982(3): 281-288]

相似文献/References:

[1]鲁嘉濠,牛富俊,程花,等.青藏高原工程走廊冻土分布模型及其变化趋势[J].山地学报,2013,(02):226.
 LU Jiahao,NIU Fujun,Cheng Hua,et al.The Permafrost Distribution Model and Its Change Trend of Qinghai-Tibet Engineering Corridor[J].Mountain Research,2013,(1):226.
[2]杨建平,丁永建,陈仁升,等.长江黄河源区多年冻土变化及其生态环境效应[J].山地学报,2004,(03):278.
[3]马东涛,张金山,王蒙,等.新藏公路新疆段多年冻土特征及其灾害初探[J].山地学报,2004,(05):554.
[4]刘元恭,张 彦*,谌小慧,等.新疆阿尔泰山多年冻土区泥炭剖面有机碳结构变化及其影响机理[J].山地学报,2024,(3):300.[doi:10-16089/j.cnki.1008-2786.000824]
 LIU Yuangong,ZHANG Yan*,CHEN Xiaohui,et al.Change of Organic Carbon Composition in Peat Profiles over the Permafrost Areas of Xinjiang Altai Mountains in China and Its Influence Mechanism[J].Mountain Research,2024,(1):300.[doi:10-16089/j.cnki.1008-2786.000824]

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 08- 02; 改回日期(Accepted date):2025- 01-18
基金项目(Foundation item): 国家自然科学基金联合基金(U2240226); 国家自然科学基金(423B2102)。[Joint Funds of the National Natural Science Foundation of China(U2240226); National Natural Science Foundation of China(423B2102)]
作者简介(Biography): 邹禧(2000-),女,四川眉山人,硕士研究生,主要研究方向:生态水文。[ZOU Xi(2000-), female, born in Meishan, Sichuan Province, M.Sc. candidate, research on eco-hydrology] E-mail: zouxi1@stu.scu.edu.cn
*通讯作者(Corresponding author): 王根绪(1965-),男,博士,研究员,主要研究方向:生态水文。[WANG Genxu(1965-), male, Ph.D., professor, research on eco-hydrology] E-mail:wanggx@scu.edu.cn
更新日期/Last Update: 2025-01-30