[1]周毅阳a,代 文b,王 春ab*,等.数字高程模型空间分辨率对精细尺度地形变化检测的影响[J].山地学报,2023,(3):446-458.[doi:10.16089/j.cnki.1008-2786.000761 ]
 ZHOU Yiyanga,DAI Wenb,WANG Chunab*,et al.Spatial Resolution of Digital Elevation Models on Fine-Scale Topographic Change Detection[J].Mountain Research,2023,(3):446-458.[doi:10.16089/j.cnki.1008-2786.000761 ]
点击复制

数字高程模型空间分辨率对精细尺度地形变化检测的影响
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第3期
页码:
446-458
栏目:
山地技术
出版日期:
2023-05-20

文章信息/Info

Title:
Spatial Resolution of Digital Elevation Models on Fine-Scale Topographic Change Detection
文章编号:
1008-2786-(2023)3-446-13
作者:
周毅阳1a代 文1b王 春2a2b*陶 宇2a2b李 敏2a2b
(1. 南京信息工程大学 a.遥感与测绘工程学院; b.地理科学学院,南京 210044; 2. 滁州学院 a.地理信息与旅游学院; b.实景地理环境安徽省重点实验室,安徽 滁州 239000)
Author(s):
ZHOU Yiyang1a DAI Wen1b WANG Chun2a2b* TAO Yu2a2b LI Min2a2b
(1. a. School of Remote Sensing and Geomatics Engineering; b. School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 211800, China; 2. a. School of Geographic Information and Tourism; b. Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou University, Anhui Province Chuzhou 239000, China)
关键词:
DEM空间分辨率 地形变化检测 分辨率效应 重采样方式 升尺度操作顺序
Keywords:
DEM spatial resolution topographic change detection resolution effect resampling mode scaling up operation order
分类号:
P208
DOI:
10.16089/j.cnki.1008-2786.000761
文献标志码:
A
摘要:
基于数字高程模型(Digital Elevation Model, DEM)的地形变化检测方法易受DEM空间分辨率效应的影响。基于两期DEM相减的地形变化检测研究,目前仍缺乏其对空间分辨率影响的讨论。本文利用两个典型地形变化的实验样区,以实测点云数据作为数据源,使用两类5种方式(点云重采样方式3种,DEM重采样方式2种)构建不同空间分辨率的DEM数据,并在不同空间分辨率下使用不同的操作顺序进行地形变化检测; 通过平均误差、标准误差、莫兰指数等多个指标探索DEM空间分辨率对地形变化检测的影响。实验结果表明:(1)DEM空间分辨率对地形变化检测的影响与多空间分辨率DEM的生成方式有关,使用双线性插值法的平均误差、标准误差、莫兰指数均最小,其不仅能有效降低地形变化检测的误差,同时还能优化误差的空间分布。(2)不同的多空间分辨率DEM生成方式得到的分辨率效应的整体趋势基本一致,即空间分辨率变粗,地形变化检测结果的整体偏差和局部偏差均变大,误差的空间自相关性也越来越强,并且误差和空间分辨率之间存在一定的线性关系。(3)地形变化检测和升尺度操作的先后顺序并不影响检测结果,即先对DEM重采样后进行变化检测的结果和先进行地形变化检测再对地形变化进行重采样的结果一致。本研究可为地形变化检测时DEM的生成方式、空间分辨率的选择以及地形变化检测的操作顺序提供参考。
Abstract:
Topographic change detection methods based on Digital Elevation Model(DEM)are susceptible to DEM spatial resolution. In the common case of topographic change detection obtained by subtractions from two-stage DEMs, it lacks proper estimation of its impact on spatial resolution.

参考文献/References:

[1] 李德仁, 夏松, 江万寿, 等. 一种地形变化检测与DEM更新的方法研究[J].武汉大学学报信息科学版, 2006, 31(7): 565-568. [LIDeren, XIA Song, JIANG Wanshou, et al. Approach for terrain change detection and DEM updating [J].Geomaticsand Information Scienceof Wuhan University, 2006, 31(7): 565-568] DOI: 10.3321/j.issn: 1671-8860.2006.07.001
[2] WHEATON J M, BRASINGTON J, DARBY S E, et al. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets[J]. Earth Surface Processes and Landforms, 2010, 35(2): 136-156. DOI: 10.1002/esp.1886
[3] VERICAT D, WHEATON J M, BRASINGTON J. Revisiting the morphological approach: Opportunities and challenges with repeat high-resolution topography[J]. Gravel-Bed Rivers: Processes and Disasters, 2017: 121-158. DOI: 10.1002/9781118971437.ch5
[4] GRAMS P E, BUSCOMBE D, TOPPING D J, et al. How many measurements are required to construct an accurate sand budget in a large river? Insights from analyses of signal and noise[J]. Earth Surface Processes and Landforms, 2019, 44(1): 160-178. DOI: 10.1002/esp.4489
[5] WHEATON J M, BRASINGTON J, DARBY S E, et al. Morphodynamic signatures of braiding mechanisms as expressed through change in sediment storage in a gravel-bed river[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(2): 759-779. DOI: 10.1002/jgrf.20060
[6] YANG Dongdong, QIU Haijun, HU Sheng, et al. Influence of successive landslides on topographic changes revealed by multitemporal high-resolution UAS-based DEM[J]. Catena, 2021, 202: 105229. DOI: 10.1016/j.catena.2021.105229
[7] 周小荃, 余宏亮, 魏玉杰, 等.无人机倾斜航空摄影监测崩岗侵蚀量变化的方法[J].农业工程学报, 2019, 35(21): 51-59. [ZHOU Xiaoquan, YU Hongliang, WEI Yujie, et al. Method for monitoring change in Benggang erosion based on oblique aerial images of UAV [J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2019, 35(21): 51-59] DOI: 10.11975/j.issn.1002-6819.2019.21.007
[8] 师动, 朱齐峰, 杨勤科, 等.DEM分辨率对坡度算法选择影响的分析[J]. 山地学报, 2020, 38(6): 935-944. [ SHI Dong, ZHU Qifeng, YANG Qinke, et al. DEM resolution influence on slope algorithm selection [J]. Mountain Research, 2020, 38(6): 935-944] DOI: 10.16089/j.cnki.10008-2786.000569
[9] 杨颖楠, 李子夫, 刘梦云, 等. 基于不同分辨率DEM的永寿县地形信息差异分析[J]. 水土保持研究, 2018, 25(6): 131-136. [YANG Yingnan, LI Zifu, LIU Mengyun, et al. Analysis of topographic difference of Yongshoucountry based on different resolutions of DEM[J]. Research of Soil and Water Conservation, 2018, 25(6): 131-136] DOI: 10.13869/j.cnki.rswc.2018.06.020
[10] 樊宇, 郭伟玲, 吴江, 等. 基于DEM分辨率的侵蚀学坡长尺度效应研究[J]. 人民黄河, 2019, 41(4): 78-82. [FAN Yu, GUO Weiling, WU Jiang, et al. Changes of derived distributed erosion slope length with DEM resolution [J]. Yellow River, 2019, 41(4): 78-82] DOI: 10.3969/j.issn.1000-1379.2019.04.017
[11] 郭春香, 梁音, 曹龙熹. 基于四种分辨率DEM的侵蚀模型地形因子差异分析[J]. 土壤学报, 2014, 51(3): 482-489. [GUO Chunxiang, LIANG Yin, CAO Longxi. Geomorphic factors in DEM-based soil erosion models as affected by resolution [J]. Acta Pedologica Sinica, 2014, 51(3): 482-489] DOI: 10.11766/trxb201304230200
[12] 吴江, 胡胜.DEM分辨率对SWAT模型水文模拟的影响研究[J]. 灌溉排水学报, 2016, 35(11): 18-23. [WU Jiang, HU Sheng. Response of DEM scale effect and hydrological simulation of SWAT model [J]. Journal of Irrigation and Drainage, 2016, 35(11): 18-23] DOI: 10.13522/j.cnki.ggps.2016.11.004
[13] 周国乾. 基于WEPP模型的丹江口库区水力侵蚀动态变化分析[D]. 呼和浩特: 内蒙古师范大学, 2018: 2-5. [ZHOU Guoqian.Dynamic change analysis of water erosion in Danjiangkoureservoir area based on WEPP model [D].Hohhot: Inner Mongolia Normal University, 2018: 2-5]
[14] BANGEN S G, WHEATON J M, BOUWES N, et al. A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers[J]. Geomorphology, 2014, 206: 343-361. DOI: 10.1016/j.geomorph.2013.10.010
[15]王雷, 龙永清, 杨勤科.重采样方法对DEM数据质量的影响[J]. 水土保持通报, 2016, 36(4): 72-77. [WANG Lei. LONG Yongqing, YANG Qinke. Effects of resampling method on data quality of DEMs [J]. Bulletin of Soil and Water Conservation, 2016, 36(4): 72-77] DOI: 10.13961/j.cnki.stbctb.2016.04.013
[16] 陈永刚, 汤国安, 祝士杰.DEM重采样误差空间分布格局及差异性分析[J]. 中国矿业大学学报, 2011, 40(4): 653-659. [CHEN Yonggang, TANG Guoan, ZHU Shijie. Spatial point pattern of DEM resampling error and difference analysis of influence factor [J]. Journal of China University of Mining and Technology, 2011, 40(4): 653-659]
[17] 王春, 江岭, 徐静, 等. DEM地面形态重构方法的精度差异特征研究[J]. 地理与地理信息科学, 2014, 30(4): 18-21+26+2.[WANG Chun, JIANG Ling, XU Jing, et al. Accuracy differences among approaches of DEM surface morphology reconstruction [J]. Geography and Geo-Information Science, 2014, 30(4): 18-21+26+2] DOI: 10.3969/j.issn.1672-0504.2014.04.004
[18] 梁倍瑜, 徐亚莉, 罗明良, 等. 三种重采样方法对冲沟坡度坡长因子的影响[J]. 土壤学报, 2018, 55(1): 64-74. [LIANG Beiyu, XU Yali, LUO Mingliang, et al. Difference analysis of three resampling methods for calculating LS of gullies different in development stage [J]. Acta Pedologica Sinica, 2018, 55(1): 64-74] DOI: 10.11766/trxb201706140087
[19] 谭壮. 高精度DEM重采样及其对土壤侵蚀模拟的影响[D]. 南充: 西华师范大学, 2017: 47-48. [TAN Zhuang. Hight resolution DEM resampling and it's effects on soil erosion simulation [D]. Nanchong: Northwest Normal University, 2017: 47-48]
[20] ZHOU Qiming, LIU Xuejun. Error analysis on grid-based slope and aspect algorithms[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(8): 957-962. DOI: 10.14358/PERS.70.8.957
[21] HODGSON M E. What cell size does the computed slope/aspect angle represent[J]. Photogrammetric Engineering and Remote Sensing, 1995, 61(5): 513-517. DOI: 10.1016/0148-9062(96)87559-0
[22] KIENZLE S. The effect of DEM raster resolution on first order, second order and compound terrain derivatives[J]. Transactions in GIS, 2004, 8(1): 83-111. DOI: 10.1111/j.1467-9671.2004.00169.x
[23] GROHMANN C H. Effects of spatial resolution on slope and aspect derivation for regional-scale analysis[J]. Computers and Geosciences, 2015, 77: 111-117. DOI: 10.1016/j.cageo.2015.02.003
[24] ZHANG Qianning, SHANG Haibin. The effect of some upscaling procedures on the slope derived from digital elevation models[J]. Transactions in GIS, 2021, 25(1): 382-395. DOI: 10.1111/tgis.12693
[25] 李思进, 代文, 熊礼阳, 等. DEM分辨率对黄土侵蚀沟形态特征表达的不确定性分析[J]. 地球信息科学学报, 2020, 22(3): 338-350. [LI Sijin, DAI Wen, XIONG Liyang, et al. Uncertainty of the morphological feature expression of loess erosional gully affected by DEM resolution [J]. Journal of Geo-information Science, 2020, 22(3): 338-350] DOI: 10.12082/dqxxkx.2020.190352
[26] COZ M L, DELCLAUX F, GENTHON P, et al. Assessment of Digital Elevation Model(DEM)aggregation methods for hydrological modeling: Lake Chad basin, Africa[J]. Computers and Geosciences, 2009, 35(8): 1661-1670. DOI: 10.1016/j.cageo.2008.07.009
[27]代文, 汤国安, 胡光辉, 等. 基于无人机摄影测量的地形变化检测方法与小流域输沙模型研究[J]. 地理科学进展,2021, 40(9): 1570-1580. [DAI Wen, TANG Guoan, HU Guanghui, et al. Modelling sediment transport in space in a watershed based on topographic change detection by UAV survey [J]. Progress in Geography, 2021, 40(9): 1570-1580] DOI: 10.18306/dlkxjz.2021.09.011

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-09-16; 改回日期(Accepted date):2023-05-10
基金项目(Foundation item): 安徽省高等学校自然科学研究重大项目(KJ2021ZD0130); 2018年度安徽省学术和技术带头人后备人选科研活动经费资助项目(2018H191); 江苏省高等学校自然科学研究项目(22KJB170016)。[Major Project of Natural Science Research of the Anhui Higher Education Institutions(KJ2021ZD0130); Project of 2018 Anhui Province Academic and Technical Leader Reserve Candidate Research Activity Funding(2018H191); The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB170016)]
更新日期/Last Update: 2023-05-30