[1]侯伟鹏,余国安*,岳蓬胜.典型高山峡谷泥石流堆积扇发育过程及特征——以藏东南帕隆藏布流域天摩沟为例[J].山地学报,2023,(4):532-544.[doi:10.16089/j.cnki.1008-2786.000768 ]
 HOU Weipeng,YU Guoan*,YUE Pengsheng.Development and Geomorphic Characteristics of a Typical Debris Flow Fan in Alpine Valley: A Case Study of the Tianmo Gully in the Parlung Tsangpo Basin, Southeast Tibet, China[J].Mountain Research,2023,(4):532-544.[doi:10.16089/j.cnki.1008-2786.000768 ]
点击复制

典型高山峡谷泥石流堆积扇发育过程及特征——以藏东南帕隆藏布流域天摩沟为例
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第4期
页码:
532-544
栏目:
山地灾害
出版日期:
2023-07-20

文章信息/Info

Title:
Development and Geomorphic Characteristics of a Typical Debris Flow Fan in Alpine Valley: A Case Study of the Tianmo Gully in the Parlung Tsangpo Basin, Southeast Tibet, China
文章编号:
1008-2786-(2023)4-532-13
作者:
侯伟鹏12余国安1*岳蓬胜12
(1. 中国科学院地理科学与资源研究所 陆地水循环及地表过程重点实验室, 北京100101; 2. 中国科学院大学 资源与环境学院, 北京100049)
Author(s):
HOU Weipeng12YU Guoan1*YUE Pengsheng12
(1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
泥石流堆积扇 高山区 地貌效应 天摩沟 藏东南
Keywords:
debris flow fan alpine valley geomorphic effect the Tianmo Gully Southeast Tibet
分类号:
P931.1; P954
DOI:
10.16089/j.cnki.1008-2786.000768
文献标志码:
C
摘要:
高山峡谷区泥石流动力地质作用强烈,是区域地貌变化的重要驱动力。泥石流堆积扇是支流(支沟)和主河(主沟)地貌外营力交互作用的地带,其形态变化反映了泥石流沟道自身水沙动态和地貌过程,也有助于理解高山河谷地貌的长期演变趋势。研究堆积扇发育过程和驱动因素有助于确定高山区河谷地貌演变成因和趋势。然而,受限于野外自然条件和数据资料,对高山区泥石流堆积扇发育过程的观测研究仍较少。本文以中国藏东南帕隆藏布流域天摩沟为研究对象,结合遥感影像、DEM数据、无人机航拍、RTK地形测量以及野外勘探调查,分析4次泥石流事件中天摩沟沟口堆积扇发育过程及形态特征。结果表明:(1)泥石流堆积扇发育过程受泥石流事件与一般水流过程共同影响。泥石流事件造成堆积扇宏观形态剧烈变化(扇面淤积抬升、扇体规模扩大等); 一般水流过程则在泥石流间歇期缓慢塑造堆积扇沟道(沟床冲刷下切、流道局部平面摆动等)。(2)泥石流堆积扇发育与主河(帕隆藏布)相互影响。堆积扇外缘形态受主河径流调整和塑造,扇体沟道溯源侵蚀下切受控于主河河床侵蚀基准变化; 主河局部地貌由原本相对窄深的单一线型发育成较为游荡的辫状河道。本研究可为泥石流沉积学、泥石流堆积扇工程选址及泥石流灾害风险防控等提供一定的科学数据支撑。
Abstract:
Debris flows in alpine-valley areas play a crucial role in regional geomorphologic evolution by severe dynamic geological effects.A debris flow fan is an interactive result of external geomorphic agencies occurring at a confluence reach between main river(main gully)and its tributary(branch gully); its morphological change reflects water-sediment dynamics and geomorphological process of a debris flow channel itself, and also helps to understand the long-term geomorphological evolution trend of alpine valley.Investigating the development process and driving factors of a debris flow fan helps to determine the geomorphic genesis and evolution of an alpine-valley landscape. Unfortunately, due to poor field working conditions and insufficient technical data, there were still few observation-based research to be conducted regarding to the development processes of debris flow fans in alpine-valley areas. In this research, a debris flow fan(named after Tianmo fan)developed at the outlet of the Tianmo Gully, a tributary of the Parlung Tsangpo River in the Southeast Tibet, China was aimed for a case study of debris flow fan evolution. It used remote-sensing images, DEM data, UAV aerial photography, RTK topographic survey, and other fieldwork to outline the development process and geomorphic characteristics of the fan after subjected to four times of debris flow events. It found(1)the formation and developing process of the debris flow fan was controlled by both episodic debris flow events and perennial stream flow. Debris flow events caused dramatic changes in macro-morphology of debris flow fans, such as silting fan surface, expanding fan body; in the case of debris flow fan eroded by perennial stream flow, it had been scoured and reshaped during an intermittent period between debris-flow events, demonstrated by incision of gully bed or lateral migration of flow channels.(2)Strong interactions existed between the development of the Tianmo fan and the Parlung Tsangpo River. The shape of the outer edge of the Tianmo fan was scoured and reshaped by the runoff of the Parlung Tsangpo River, and the headward erosion was controlled by base level of erosion. Consequently, the local landform of the main river has developed from a relatively narrow and deep single channel into kind of wandering braided river channels. The study can provide some scientific data support for sedimentology of debris flow, engineering site selection in debris flow fan and risk prevention and control of debris flow disaster.

参考文献/References:

[1] 崔鹏, 郭晓军, 姜天海, 等. “亚洲水塔”变化的灾害效应与减灾对策[J]. 中国科学院院刊, 2019, 34(11): 1313-1321. [CUI Peng, GUO Xiaojun, JIANG Tianhai, et al. Disaster effect induced by Asian Water Tower change and mitigation strategies [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1313-1321] DOI:10.16418/j.issn.1000-3045.2019.11.014
[2] 余国安, 鲁建莹, 李志威, 等. 气候变化影响下藏东南帕隆藏布流域高山区泥石流的地貌效应[J]. 地理学报, 2022, 77(3): 619-634. [YU Guoan, LU Jianying, LI Zhiwei, et al. Geomorphic effects of debris flows in high mountain areas of the Parlung Zangbo basin, southeast Tibet under the influence of climate change [J]. Acta Geographica Sinica, 2022, 77(3): 619-634] DOI:10.11821/dlxb202203009
[3] MATHER A E, STOKES M, WHITFIELD E. River terraces and alluvial fans: The case for an integrated Quaternary fluvial archive [J]. Quaternary Science Reviews, 2017, 166: 74-90. DOI:10.1016/j.quascirev.2016.09.022
[4] 崔之久. 泥石流沉积与环境[M]. 北京: 海洋出版社, 1996: 1-192. [CUI Zhijiu. Debris flow deposition and environment [M]. Beijing: China Ocean Press, 1996: 1-192]
[5] BLAIR T C, MCPHERSON J G. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages [J]. Journal of Sedimentary Research, 1994, 64(3): 450-489. DOI:10.1306/D4267DDE-2B26-11D7-8648000102C1865D
[6] BALLANTYNE C K, WHITTINGTON G. Late Holocene floodplain incision and alluvial fan formation in the central Grampian Highlands, Scotland: Chronology, environment and implications [J]. Journal of Quaternary Science, 1999, 14(7): 651-671. DOI:10.1002/(SICI)1099-1417(199912)14:7<651::AID-JQS469>3.0.CO; 2-1
[7] 田连权. 滇东北蒋家沟粘性泥石流堆积地貌[J]. 山地研究, 1991, 9(3): 185-192+205. [TIAN Lianquan. Accumulational landform of viscous debris flow in Jiangjia Ravine, northeast Yunnan [J]. Mountain Research, 1991, 9(3): 185-192+205] DOI:10.16089/j.cnki.1008-2786.1991.03.008
[8] 李新坡, 莫多闻, 朱忠礼. 侯马盆地冲积扇及其流域地貌发育规律[J]. 地理学报, 2006, 61(3): 241-248. [LI Xinpo, MO Duowen, ZHU Zhongli. Developments of alluvial fans and their catchments in Houma Basin [J]. Acta Geographica Sinica, 2006, 61(3): 241-248] DOI:10.3321/j.issn:0375-5444.2006.03.002
[9] 吕立群, 王兆印, 徐梦珍, 等. 怒江泥石流扇地貌特征与扇体堵江机理研究[J]. 水利学报, 2016, 47(10): 1245-1252. [LYU Liqun, WANG Zhaoyin, XU Mengzhen, et al. Geomorphic characters of debris flow fans along Nu River and the river blocking mechanisms [J]. Journal of Hydraulic Engineering, 2016, 47(10): 1245-1252] DOI:10.13243/j.cnki.slxb.20160255
[10] 张金山, 沈兴菊, 魏军林. 泥石流堆积扇发育演化特征观测研究[J]. 长江流域资源与环境, 2010, 19(12): 1478-1483. [ZHANG Jinshan, SHEN Xingju, WEI Junlin. Observational study on the characteristics of development and evolvement of debris flow deposit fan [J]. Resources and Environment in the Yangtze Basin, 2010, 19(12): 1478-1483]
[11] 印森林, 刘忠保, 陈燕辉, 等. 冲积扇研究现状及沉积模拟实验—以碎屑流和辫状河共同控制的冲积扇为例[J]. 沉积学报, 2017, 35(1): 10-23. [YIN Senlin, LIU Zhongbao, CHEN Yanhui, et al. Research progress and sedimentation experiment simulation about alluvial fan: A case study on alluvial fan controlled by debris flow and braided river [J]. Acta Sedimentologica Sinica, 2017, 35(1): 10-23] DOI:10.14027/j.cnki.cjxb.2017.01.002
[12] VINCENT L T, EATON B C, LEENMAN A S, et al. Secondary geomorphic processes and their influence on alluvial fan morphology, channel behavior and flood hazards [J]. Journal of Geophysical Research: Earth Surface, 2022, 127(2): e2021JF006371. DOI:10.1029/2021JF006371
[13] 崔卫国, 穆桂金, 夏斌, 等. 玛纳斯河山麓冲积扇演变遥感研究[J]. 地理与地理信息科学, 2006, 22(3): 39-42. [CUI Weiguo, MU Guijin, XIA Bin, et al. Evolution of alluvial fans at range-front of Tian Mountains in Manas River Valley based on remote sensing technology [J]. Geography and Geo-Information Science, 2006, 22(3): 39-42] DOI:10.3969/j.issn.1672-0504.2006.03.009
[14] WASKLEWICZ T, SCHEINERT C. Development and maintenance of a telescoping debris flow fan in response to human-induced fan surface channelization, Chalk Creek Valley Natural Debris Flow Laboratory, Colorado, USA [J]. Geomorphology, 2016, 252: 51-65. DOI:10.1016/j.geomorph.2015.06.033
[15] DE HAAS T, DENSMORE A L, STOFFEL M, et al. Avulsions and the spatio-temporal evolution of debris-flow fans [J]. Earth-Science Reviews, 2018, 177: 53-75. DOI:10.1016/j.earscirev.2017.11.007
[16] 刘希林. 泥石流平面形态的统计分析[J]. 海洋地质与第四纪地质, 1995, 15(3): 93-104. [LIU Xilin. Statistical analysis on the plane shapes of debris flow fan [J]. Marine Geology and Quaternary Geology, 1995, 15(3): 93-104] DOI:10.16562/j.cnki.0256-1492.1995.03.011
[17] 屈永平, 唐川, 刘洋, 等. 四川省都江堰市龙池地区“8·13”泥石流堆积扇调查和分析[J]. 水利学报, 2015, 46(2): 197-207+216. [QU Yongping, TANG Chuan, LIU Yang, et al. Survey and analysis of the “8.13” debris flows fan in Longchi town of Dujiangyan city, Sichuan province [J]. Journal of Hydraulic Engineering, 2015, 46(2): 197-207+216] DOI:10.13243/j.cnki.slxb.2015.02.009
[18] 李旭, 黄江成, 徐慧娟, 等. 怒江高山峡谷区泥石流堆积扇特征分析[J]. 云南大学学报(自然科学版), 2016, 38(5): 750-757. [LI Xu, HUANG Jiangcheng, XU Huijuan, et al. The characteristics analysis of debris flow fan in Nujiang alpine canyon region [J]. Journal of Yunnan University(Natural Sciences Edition), 2016, 38(5): 750-757] DOI:10.7540/j.ynu.20160035
[19] 邹任洲, 张佳佳, 王军朝, 等. 藏东南帕隆藏布流域波密县城至索通泥石流堆积扇形成的制约因素与特征[J]. 四川师范大学学报(自然科学版), 2018, 41(3): 419-426. [ZOU Renzhou, ZHANG Jiajia, WANG Junchao, et al. The restricting factors and characteristics of debris flow fans of Bomi-Suotong Village section of Palong Zangbu River basin in southeast Tibet [J]. Journal of Sichuan Normal University(Natural Science), 2018, 41(3): 419-426] DOI:10.3969/j.issn.1001-8395.2018.03.023
[20] 崔之久, 熊黑钢. 泥石流沉积相模式[J]. 沉积学报, 1990, 8(3): 128-140. [CUI Zhijiu, XIONG Heigang. A facies model of debris flow [J]. Acta Sedimentologica Sinica, 1990, 8(3): 128-140] DOI:10.14027/j.cnki.cjxb.1990.03.013
[21] SORRISO-VALVO M, ANTRONICO L, LE PERA E. Controls on modern fan morphology in Calabria, southern Italy [J]. Geomorphology, 1998, 24(2-3): 169-187. DOI:10.1016/S0169-555X(97)00079-2
[22] FRANZI L, BIANCO G. A statistical method to predict debris flow deposited volumes on a debris fan [J]. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2001, 26(9): 683-688. DOI:10.1016/S1464-1917(01)00067-8
[23] 陈杰, 韦方强, 崔鹏. 小江流域泥石流堆积扇形成的制约因素及其特征[J]. 地理科学, 2005, 25(6): 6704-6708. [CHEN Jie, WEI Fangqiang, CUI Peng. Restricting conditions and their characteristics for debris flow fans in Xiaojiang River valley [J]. Scientia Geographica Sinica, 2005, 25(6): 6704-6708] DOI:10.3969/j.issn.1000-0690.2005.06.009
[24] HOOKE R L B. Processes on arid-region alluvial fans [J]. The Journal of Geology, 1967, 75(4): 438-460. DOI:10.1086/627271
[25] BLAIR T C, MCPHERSON J G. Alluvial fan processes and forms [J]. Geomorphology of Desert Environments, 1994: 354-402. DOI:10.1007/978-94-015-8254-4-14
[26] MILANA J P, RUZYCKI L. Alluvial-fan slope as a function of sediment transport efficiency [J]. Journal of Sedimentary Research, 1999, 69(3): 553-562. DOI:10.2110/jsr.69.553
[27] STOCK J D, SCHMIDT K M, MILLER D M. Controls on alluvial fan long-profiles [J]. Geological Society of America Bulletin, 2008, 120(5-6): 619-640. DOI:10.1130/B26208.1
[28] HARVEY A. Dryland alluvial fans [J]. Arid Zone Geomorphology: Process, Form and Change in Drylands, 2011: 333-371. DOI:10.1002/9780470710777.ch14
[29] BRAZIER V, WHITTINGTON G, BALLANTYNE C K. Holocene debris cone evolution in Glen Etive, Western Grampian Highlands, Scotland [J]. Earth Surface Processes and Landforms, 1988, 13(6): 525-531. DOI:10.1002/esp.3290130606
[30] RITS D S, VAN BALEN R T, PRINS M A, et al. Evolution of the alluvial fans of the Luo River in the Weihe Basin, central China, controlled by faulting and climate change: A reevaluation of the paleogeographical setting of Dali Man site [J]. Quaternary Science Reviews, 2017, 166: 339-351. DOI:10.1016/j.quascirev.2017.01.013
[31] SCHOCH-BAUMANN A, BLÖTHE J H, MUNACK H, et al. Postglacial outsize fan formation in the Upper Rhone valley, Switzerland-gradual or catastrophic? [J]. Earth Surface Processes and Landforms, 2022, 47(4): 1032-1053. DOI:10.1002/esp.5301
[32] KESEL R H, LOWE D R. Geomorphology and sedimentology of the Toro Amarillo alluvial fan in a humid tropical environment, Costa Rica [J]. Geografiska Annaler: Series A, Physical Geography, 1987, 69(1): 85-99. DOI:10.1080/04353676.1987.11880199
[33] SAITO K, OGUCHI T. Slope of alluvial fans in humid regions of Japan, Taiwan and the Philippines [J]. Geomorphology, 2005, 70(1-2): 147-162. DOI:10.1016/j.geomorph.2005.04.006
[34] CROSTA G B, FRATTINI P. Controls on modern alluvial fan processes in the central Alps, northern Italy [J]. Earth Surface Processes and Landforms, 2004, 29(3): 267-293. DOI:10.1002/esp.1009
[35] DAVIES T R H, KORUP O. Persistent alluvial fanhead trenching resulting from large, infrequent sediment inputs [J]. Earth Surface Processes and Landforms, 2007, 32(5): 725-742. DOI:10.1002/esp.1410
[36] FRANKE D, HORNUNG J, HINDERER M. A combined study of radar facies, lithofacies and three‐dimensional architecture of an alpine alluvial fan(Illgraben fan, Switzerland)[J]. Sedimentology, 2015, 62(1): 57-86. DOI:10.1111/sed.12139
[37] 胡凯衡, 崔鹏, 游勇, 等. 物源条件对震后泥石流发展影响的初步分析[J]. 中国地质灾害与防治学报, 2011, 22(1): 1-6. [HU Kaiheng, CUI Peng, YOU Yong, et al. Influence of debris supply on the activity of post-quake debris flows [J]. The Chinese Journal of Geological Hazard and Control, 2011, 22(1): 1-6] DOI:10.3969/j.issn.1003-8035.2011.01.001
[38] 高波, 张佳佳, 王军朝, 等. 西藏天摩沟泥石流形成机制与成灾特征[J]. 水文地质工程地质, 2019, 46(5): 144-153. [GAO Bo, ZHANG Jiajia, WANG Junchao, et al. Formation mechanism and disaster characteristics of debris flow in the Tianmo gully in Tibet [J]. Hydrogeology and Engineering Geology, 2019, 46(5): 144-153] DOI:10.16030/j.cnki.issn.1000-3665.2019.05.19
[39] GE Yonggang, CUI Peng, SU Fenghuan, et al. Case history of the disastrous debris flows of Tianmo Watershed in Bomi county, Tibet, China: Some mitigation suggestions [J]. Journal of Mountain Science, 2014, 11(5): 1253-1265. DOI:10.1007/s11629-014-2579-2
[40] DENG Mingfeng, CHEN Ningsheng, LIU Mei. Meteorological factors driving glacial till variation and the associated periglacial debris flows in Tianmo Valley, south-eastern Tibetan Plateau [J]. Natural Hazards and Earth System Sciences, 2017, 17(3): 345-356. DOI:10.5194/nhess-17-345-2017
[41] WEI Rongqiang, ZENG Qingli, DAVIES T, et al. Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring [J]. Engineering Geology, 2018, 233: 172-182. DOI:10.1016/j.enggeo.2017.12.013
[42] 中国科学院青藏高原综合科学考察队. 西藏河流与湖泊[M]. 北京: 科学出版社, 1984: 1-239. [Tibetan Plateau Scientific Expedition Team of Chinese Academy of Sciences. Rivers and lakes in Tibet [M]. Beijing: Science Press, 1984: 1-239]
[43] 中国科学院、水利部成都山地灾害与环境研究所, 西藏自治区交通科学研究所. 川藏公路典型山地灾害研究[M]. 成都: 成都科技大学出版社, 1999: 1-210. [Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Institute of the Traffic Science, Tibet Autonomous Region. A study of typical mountain hazards along Sichuan-Tibet highway [M]. Chengdu: Chengdu Science and Technology University Publishing House, 1999: 1-210]
[44] 白玲, 李国辉, 宋博文. 2017年西藏米林6.9级地震震源参数及其构造意义[J]. 地球物理学报, 2017, 60(12): 4956-4963. [BAI Ling, LI Guohui, SONG Bowen. The source parameters of the M6.9 Mainling, Tibet earthquake and its tectonic implications [J]. Chinese Journal of Geophysics, 2017, 60(12): 4956-4963] DOI:10.6038/cjg20171234
[45] 杨逸畴, 高登义, 李渤生. 雅鲁藏布江下游河谷水汽通道初探[J]. 中国科学: 化学, 1987, 17(8): 893-902. [YANG Yichou, GAO Dengyi, LI Bosheng. Preliminary exploration of the vapor path in the lower Yalung Tsangpo River valley [J]. Scientia Sinica(Chimica), 1987, 17(8): 893-902] DOI:10.1360/zb1987-17-8-893
[46] 中国科学院青藏高原综合科学考察队. 西藏冰川[M]. 北京: 科学出版社, 1986: 1-98. [Tibetan Plateau Scientific Expedition Team of Chinese Academy of Sciences. Glaciers in Tibet [M]. Beijing: Science Press, 1986: 1-98]
[47] 杨威, 姚檀栋, 徐柏青, 等. 近期藏东南帕隆藏布流域冰川的变化特征[J]. 科学通报, 2010, 55(18):1775-1780. [YANG Wei, YAO Tandong, XU Baiqing, et al. Characteristics of recent temperat glacier fluctuations in the Parlang Zangbo River basin, soutbeast Tibetan Plateau [J]. Chinese Science Bulletin, 2010, 55(18): 1775-1780] DOI:10.1007/s11434-010-3214-4
[48] 鲁建莹, 余国安, 黄河清. 气候变化影响下高山区泥石流形成机制研究及展望[J]. 冰川冻土, 2021, 43(2): 555-567. [LU Jianying, YU Guoan, HUANG Heqing. Research and prospect on formation mechanism of debris flows in high mountains under the influence of climate change [J]. Journal of Glaciology and Geocryology, 2021, 43(2): 555-567] DOI:10.7522/j.issn.1000-0240.2021.0043

相似文献/References:

[1]陈剑,崔之久,戴福初,等.金沙江奔子栏-达日河段大型泥石流堆积扇的成因机制[J].山地学报,2011,(03):312.
 CHEN Jian,CUI Zhijiu,Dai Fuchu,et al.Genetic Mechanism of the Major Debrisflow Deposits at BenzilanDari Segment, the Upper Jinsha River[J].Mountain Research,2011,(4):312.

备注/Memo

备注/Memo:
收稿日期(Received date): 2022- 08-17; 改回日期(Accepted date):2023- 06- 08
基金项目(Foundation item): 第二次青藏高原综合科学考察研究(2019QZKK0903); 国家自然科学基金项目(41971010)。[The Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0903); National Natural Science Foundation of China(41971010)]
作者简介(Biography): 侯伟鹏(1998-),男,江苏淮安人,博士研究生,主要研究方向:河流地貌及灾害。[HOU Weipeng(1998-), male, born in Huai'an, Jiangsu province, Ph.D. candidate, research on fluvial process and geological hazard] E-mail: houwp.20s@igsnrr.ac.cn
*通讯作者(Corresponding author): 余国安(1978-),男,博士,副研究员,主要研究方向:泥沙运动、河流地貌及灾害。[YU Guoan(1978-), male, Ph.D., associate professor, research on sediment movement, fluvial process and geo-hazard]E-mail: yuga@igsnrr.ac.cn
更新日期/Last Update: 2023-07-30