[1]李中轩,朱 诚*,袁胜元,等.玉溪遗址多期古洪水的气候背景与周期性[J].山地学报,2024,(1):37-46.[doi:10.16089/j.cnki.1008-2786.000802]
 LI Zhongxuan,ZHU Cheng*,YUAN Shengyuan,et al.Periodicity of Multi-Period Paleofloods and Paleoclimatic Context Recorded by the Layers at the Yuxi Site, Southwestern China[J].Mountain Research,2024,(1):37-46.[doi:10.16089/j.cnki.1008-2786.000802]
点击复制

玉溪遗址多期古洪水的气候背景与周期性
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第1期
页码:
37-46
栏目:
山地环境
出版日期:
2024-03-25

文章信息/Info

Title:
Periodicity of Multi-Period Paleofloods and Paleoclimatic Context Recorded by the Layers at the Yuxi Site, Southwestern China
文章编号:
1008-2786-(2024)1-037-10
作者:
李中轩1朱 诚2*袁胜元1焦士兴3
(1. 许昌学院 城市与环境学院,河南 许昌461000; 2. 南京大学 地理与海洋学院,南京 210093; 3. 安阳师范学院 资源环境学院,河南 安阳 455000)
Author(s):
LI Zhongxuan1 ZHU Cheng2* YUAN Shengyuan1 JIAO Shixing3
(1. School of Urban and Environmental Science, Xuchang University, Xuchang 461000, Henan, China; 2. School of Geography and Oceanology, Nanjing University, Nanjing 210093, China; 3. School of Resources and Environment, Anyang Normal University, Anyang 455000, Henan, China)
关键词:
古洪水沉积 环境变迁 端元分析 古洪水周期 气候异常 玉溪遗址
Keywords:
paleoflood deposition environmental evolution end-member analysis paleoflood periodicity climatic anomaly the Yuxi site
分类号:
P534.63
DOI:
10.16089/j.cnki.1008-2786.000802
文献标志码:
A
摘要:
全新世时期形成的连续性古洪积层是追溯古环境信息的可靠记录。重庆市丰都县玉溪遗址存在多期连续的文化层与洪积层,但已有研究并未系统分析该遗址区的古洪水发生机制及其气候背景,并且缺乏基于多期古洪积层的周期性研究。(1)本文基于动物骨屑AMS14C年代数据,用Bacon程序拟合玉溪遗址剖面的沉积-年代关系,判定玉溪剖面古洪积层形成时段为约6.4 ka BP~7.3 ka BP。(2)古洪水沉积序列的粒度和端元分析结果显示,玉溪古洪积层由细粉砂-粉砂组成,表明古洪积层为溢岸憩流和滞水缓流堆积而成。(3)孢粉组合、磁化率、Rb/Sr和Si/Al比值等环境指标显示,玉溪剖面的古洪水沉积经历了早期湿热、中期温干、晚期暖湿三个阶段,其中古洪积层在温干阶段的沉积速率最大(30 cm·(100a)-1),而且古洪水发生的频率亦高于湿热期。(4)古洪水沉积序列的小波功率谱分布特征表明,玉溪剖面的古洪水存在约30 a的短周期和约350 a的长周期; 其长周期与区域性气候冷事件相关、短周期与ENSO事件导致的夏季风异常有关。本文提出的搬运洪积物的三种动力类型、干湿期古洪水的沉积速率差异以及古洪水泛滥的长短周期,对研究新石器早期重庆地区的人地关系和长江上游的洪水发生机制有参考意义。
Abstract:
Continuous paleo-diluvia formed in Holocene epoch have been proved to be one of the reliable carriers for tracing paleoenvironmental information. In the Yuxi site in Fengdu county, Chongqing city, China, there found multiple-period consecutive cultural and paleo-diluvial layers; unfortunately, previous studies had not systematically analyzed the layers for paleo-floods mechanism and paleoclimatic context, particularly short of knowledge of periodicity of the layers.
(1)In this study, it examined AMS14C dating of animal bone fragments collected in the cultural layers of the T0403 profile at the Yuxi site; then it obtained a profile of deposition-chronology relationship fitted by Bacon program. It concluded that the formation period of paleo-diluvia in the Yuxi site was in the range of 6.4 ka BP-7.3 ka BP.
(2)In terms of granularity analysis and end-members analysis of the paleo-diluvial layers, the paleoflood sediments were mainly composed of fine-silt and silt, which suggests that the paleo-diluvia were formed by gradual accumulation inflicted by overbank slack flow and perched slow water.
(3)According to environmental indexes such as synsporopollen assemblage, magnetic susceptibility, Rb/Sr and Si/Al ratios, the paleo-diluvia in the Yuxi site experienced three stages: early hot-wet, middle cool-dry and late warm-dry. The deposition rate of paleo-diluvia was the highest(30 cm·(100a)-1)in warm-dry stage, and the frequency of paleoflood was higher than those in the hot-wet stage.
(4)In view of the wavelet power spectrum distribution of the paleo-diluvium sedimentary sequence, the paleoflood events speculated by the Yuxi profile exhibited a short cycle of ca. 30 years and a long cycle of ca. 350 years. The long cycle was related to climate cooling events, and the short one was related to summer monsoon anomalies caused by ENSO events.
By this study, it proposed the three dynamic types of paleo-flood deposit transportation, the difference in accumulation rate of paleo-diluvia in dry and wet periods, and the long or short cycles of paleofloods, which are of reference significance for studying the man-land relationship in Chongqing area in the early Neolithic Age and the flood mechanism in the upper reaches of the Yangtze River.

参考文献/References:

[1] WU Li, LI Feng, ZHU Cheng, et al. Holocene environmental change and archaeology, Yangtze River Valley, China: Review and prospects[J]. Geoscience Frontier, 2012, 3(6): 875-892. DOI: 10.1016/j.gsf.2012.02.006
[2] INNES J B, ZONG Yongqiang, WANG Zhanghua, et al. Climatic and palaeoecological changes during the mid- to late Holocene transition in eastern China: High-resolution pollen and non-pollen palynomorph analysis at Pingwang, Yangtze coastal lowlands[J]. Quaternary Science Reviews, 2014, 99: 164-175. DOI: 10.1016/j.quascirev.2014.06.013
[3] LILLIOS K T, BLANCO-GONZÁLEZ A, DRAKE B L, et al. Mid-late Holocene climate, demography, and cultural dynamics in Iberia: A multi-proxy approach[J]. Quaternary Science Reviews, 2016, 135: 138-153. DOI: 10.1016/j.quascirev.2016.01.011
[4] CHEN Fahu, JIA Jia, CHEN Jianhui, et al. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-palaeosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146: 134-146. DOI: 10.1016/j.quascirev.2016.06.002
[5] WATERS M R, KEENE J L, PREWITT E R, et al. Late quaternary geology, archaeology, and geoarchaeology of Hall's Cave, Texas[J]. Quaternary Science Review, 2021, 274: 107276. DOI: 10.1016/j.quascirev.2021.107276
[6] 朱 诚, 郑朝贵, 吴 立. 长江流域新石器环境考古[M]. 北京: 科学出版社, 2016: 102-110.[ZHU Cheng, ZHENG Chaogui, WU Li. Environmental archaeology since the Neolithic Age in the Yangtze River valley, China[M]. Beijing: Science Press, 2016: 102-110]
[7] SHARMA S, SHUKLA A D, BARTARYA S K, et al. The Holocene floods and their affinity to climatic variability in the western Himalaya, India[J]. Geomorphology, 2017, 290: 317-334. DOI: 10.1016/j.geomorph.2017.04.030
[8] 周凤琴, 唐从胜. 长江泥沙来源与堆积规律研究[M]. 武汉: 长江出版社, 2008: 61-63.[ZHOU Fengqin, TANG Congsheng. Sediment source and accumulation law of the Yangtze River[M]. Wuhan: Changjiang Press, 2008: 61-63]
[9] 朱诚, 马春梅, 张文卿, 等. 神农架大九湖15.75 ka BP以来的孢粉记录和环境演变[J]. 第四纪研究, 2006, 26(5): 814-826.[ZHU Cheng, MA Chunmei, ZHANG Wenqing, et al. Pollen record from Dajiuhu Basin of Shennongjia and environmental changes since 15.75 ka BP[J]. Quaternary Sciences, 2006, 26(5): 814-826] DOI: 10.11928/j.issn.1001-7410.2006.05.17
[10] BENITO G,MACKLIN M G,ZIELHOFER C, et al. Holocene flooding and climate change in the Mediterranean[J]. Catena, 2015, 130: 13-33. DOI: 10.1016/j.catena.2014.11.014
[11] BANERJI U S, ARULBALAJI P, PADMALAL D. Holocene climate variability and Indian Summer Monsoon: An overview[J]. The Holocene, 2020, 30: 744-773. DOI: 10.1177/0959683619895577
[12] ZHANG Yuzhu, HUANG Chunchang, TAN Zhihai, et al. Prehistoric and historic overbank floods in the Luoyang Basin along the Luohe River, middle Yellow River basin, China[J]. Quaternary International, 2019, 521: 118-128. DOI: 10.1016/j.quaint.2019.06.023
[13] 谭典佳, 马运强, 李志忠, 等. 天山北麓河流下游冲积平原沉积记录的中晚全新世环境演变[J]. 山地学报, 2023, 41(3): 307-321.[TAN Dianjia, MA Yunqiang, LI Zhizhong, et al. Environmental evolution of middle-late Holocene verified by sedimentary evidences in the alluvial plain in the northern foothills of the Tianshan Mountains, China[J]. Mountain Research, 2023, 41(3): 307-321] DOI: 10.16089/j.cnki.1008-2786.000750
[14] HONG Yetang, HONG Bing, LIN Qinghua, et al. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12000 years and palaeo-El Nino[J]. Earth and Planetary Science Letters, 2005, 231: 337-346. DOI: 10.1016/j.epsl.2004.12.025
[15] 赵侃, 陈仕涛, 崔英方, 等. 神农架石笋记录的近200年东亚季风变化及其ENSO响应[J]. 地理研究, 2015, 34(1): 74-84.[ZHAO Kan, CHEN Shitao, CUI Yingfang, et al. East Asian monsoon changes and its ENSO response revealed by a 200-year stalagmite record from Yongxing Cave on the Mountain Shengnonjia[J]. Geographical Research, 2015, 34(1): 74-84] DOI: 10.11821/dlyj201501007
[16] 陈建徽, 饶志国, 刘建宝, 等. 全新世东亚夏季风最强盛期出现在何时?——兼论中国南方石笋氧同位素的古气候意义[J]. 中国科学: 地球科学, 2016, 46(11): 1494-1504.[CHEN Jianhui, RAO Zhiguo, LIU Jianbao, et al. When the strongest East Asia Summer Monsoon emerged? Also on the significance of oxygen isotopes from stalactite in south China for studies of paleoclimate[J]. Scientia Sinica Terrae, 2016, 46(11): 1494-1504] DOI: 10.1360/N072015-00500
[17] 徐伟峰, 朱诚. 长江三峡库区玉溪遗址地层沉积特征研究[J]. 地层学杂志, 2008, 32(1): 21-26.[XU Weifeng, ZHU Cheng. Sedimentary features of the strata at the Yuxi Site of the Three Gorges Reservoir area[J]. Journal of Stratigraphy, 2008, 32(1): 21-26] DOI: 10.19839/j.cnki.dcxzz.2008.0018
[18] 朱诚, 马春梅, 王慧麟, 等. 长江三峡库区玉溪遗址T0403探方古洪水沉积特征研究[J]. 科学通报, 2008, 53(S1): 1-16.[ZHU Cheng, MA Chunmei, WANG Huilin, et al. Study on sedimentology of the paleofloods at T0403 profile of the Yuxi Site in Three Gorges Reservoir[J]. Chinese Science Bulletin, 2008, 53(S1): 1-16] DOI: 10.1360/csb2008-53-zk1-1
[19] 崔安宁, 马春梅, 朱诚, 等. 长江三峡库区玉溪遗址的环境与人类活动的孢粉记录[J]. 微体古生物学报, 2015, 32(2): 161-174.[CUI Anning, MA Chunmei, ZHU Cheng, et al. Pollen records of the Yuxi Culture Site in Three Gorges Reservoir area, Yangtze River[J]. Acta Micropalaeontologica Sinica, 2015, 32(2): 161-174] DOI: 10.16087/j.cnki.1000-0674.2015.02.005
[20] 马晓娇, 白九江, 邹后曦. 重庆丰都玉溪遗址2004年度浮选结果及分析[J]. 农业考古, 2017(6): 40-44.[MA Xiaojiao, BAI Jiujiang, ZOU Houxi. Flotation and analysis on plant remains from the Yuxi Site at Fengdu county, Chongqing[J]. Agricultural Archaeology, 2017(6): 40-44]
[21] 陈珊珊, 马江波. 玉溪文化古居民生业模式探析[J]. 农业考古, 2020(3): 13-20.[CHEN Shanshan, MA Jiangbo. Research on livelihood mode of ancient residents in Yuxi culture[J]. Agricultural Archaeology, 2020(3): 13-20]
[22] 王海阔, 徐静, 白九江, 等. 重庆丰都玉溪遗址北部新石器时代遗存2004年度发掘简报[J]. 江汉考古, 2013(3): 28-43.[WANG Haikuo, XU Jing, BAI Jiujiang, et al. Report of Neolithic remains at Yuxi Site of Fengdu county in 2004[J]. Jianghan Archaeology, 2013(3): 28-43]
[23] BLAAUW M, HEUVELINK, G B M, MAUQUOY D, et al. A numerical approach to 14C wiggle-match dating of organic deposits: Best fits and confidence intervals[J]. Quaternary Science Reviews, 2003, 22: 1485-1500. DOI: 10.1016/S0277-3791(03)00086-6
[24] CHEN Jun, AN Zhisheng, HEAD J. Variation of Rb/Sr ratios in the loess-palaeosol sequences of central China during the last 130,000 years and their implications for monsoon palaeoclimatology[J]. Quaternary Research, 1999, 51(3): 215-219. DOI: 10.1006/qres.1999.2071
[25] 袁新田, 谢世友. 重庆金佛山国家自然保护区山顶与山坡表土孢粉对比研究[J]. 山地学报, 2012, 30(6): 655-662.[YUAN Xintina, XIE Shiyou. A comparative study on surface spore-pollen in the mountaintop and mountainside of Mt. Jinfo Nature Reserve, Chongqing, China[J]. Mountain Research, 2012, 30(6): 655-662] DOI: 10.16089/j.cnki.1008-2786.2012.06.010
[26] BENITO G, THORNDYCRAFT V R. Palaeoflood hydrology and its role in applied hydrological sciences[J]. Journal of Hydrology, 2005, 313: 3-15. DOI: 10.1016/j.jhydrol.2005.02.002
[27] 郎燕, 刘宁, 刘世荣. 气候和土地利用变化影响下生态屏障带水土流失趋势研究[J]. 生态学报, 2021, 41(13): 5106-5117.[LANG Yan, LIU Ning, LIU Shirong. Changes in soil erosion and its driving factors under climate change and land-use scenarios in Sichuan-Yunnan-Loess Plateau region and the southern hilly mountain belt, China[J]. Acta Ecologica Sinica, 2021, 41(13): 5106-5117] DOI: 10.5846/stxb202101310341
[28] SADEGHI S H, HARCHEGANI M K, ASADI H. Variability of particle size distributions of upward/downward splashed materials in different rainfall intensities and slopes[J]. Geoderma, 2017, 290: 100-106. DOI: 10.1016/j.geoderma.2016.12.007
[29] 郑文波, 邓宏文. 河流相溢岸沉积特征及其层序地层意义[J]. 吉林大学学报(地球科学版), 2012, 42(S2): 79-87.[ZHENG Wenbo, DENG Hongwen. Sedmentary features and stratigraphy significance of overbank deposition in fluvial system[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(S2): 79-87]
[30] PATERSON G A, HESLOP D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16: 4494-4506. DOI: 10.1002/2015GC006070
[31] 王兆夺, 黄春长, 杨红瑾, 等. 六盘山东麓晚更新世以来黄土粒度指示的物源特征及演变[J]. 地理科学, 2018, 38(5): 818-826.[WANG Zhaoduo, HUANG Chunchang, YANG Hongjin, et al. Loess provenance characteristics and evolution indicated by grain size since late pleistocene at the eastern foot of Liupan Mountains, China[J]. Scientia Geographica Sinica, 2018, 38(5): 818-826] DOI: 10.13249/j.cnki.sgs.2018.05.020
[32] LI Ziye, CHEN Minte, LIN Dacheng, et al. Evidence of solar insolation and internal forcing of sea surface temperature changes in the eastern tropical Indian Ocean during the Holocene[J]. Quaternary International, 2018, 490(10): 1-9. DOI: 10.1016/j.quaint.2018.04.001
[33] 马奋华, 管兆勇. 中国东部AOD等级变化及与东亚夏季风的联系[J]. 中国环境科学, 2018, 38(9): 3201-3210.[MA Fenhua, GUAN Zhaoyong. Features of graded AOD in east China in association with East Asian summer monsoon anomalies[J]. China Environmental Science, 2018, 38(9): 3201-3210]
[34] WANG Yongjin, CHENG Hai, EDWARDS R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308: 854-857. DOI: 10.1126/science.1106296
[35] MA Chunmei, ZHU Cheng, ZHENG Chaogui, et al. High-resolution geochemistry records of climate changes since late-glacial from Dajiuhu peat in Shennongjia Mountains, central China[J]. Chinese Science Bulletin, 2008, 53(S1): 28-41. DOI: 10.1007/s11434-008-5007-6
[36] 吴帆, 朱沛煌, 季孔庶. 马尾松分布格局对未来气候变化的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 196-204.[WU Fan, ZHU Peihuang, JI Kongshu. Response of masson pine(Pinus massoniana)distribution pattern to future climate change[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2022, 46(2): 196-204] DOI: 10.12302/j.issn.1000-2006.202008019
[37] 邱雅惠, 刘健, 刘斌, 等. 全新世北半球典型冷事件的模拟研究[J]. 第四纪研究, 2019, 39(4): 1055-1067.[QIU Yahui, LIU Jian, LIU Bin, et al. Characteristics of Holocene cold events in the Northern Hemisphere from the TraCE-21ka model simulation[J]. Quaternary Sciences, 2019, 39(4): 1055-1067] DOI: 10.11982/j.issn.1001-7410.2019.04.23
[38] NYADJRO E S. Impacts of the 2019 strong IOD and monsoon events on Indian Ocean sea surface salinity[J]. Remote Sensing in Earth Systems Sciences, 2021, 4: 158-171. DOI: 10.1007/s41976-021-00054-1
[39] WANG Bin, WU Renguang, FU Xiouhua. Pacific East-Asian teleconnection: How does ENSO affects East Asian climate?[J]. Journal of Climate, 2000, 13: 1517-1536. DOI: 10.1175/1520-0442(2000)013<1517
[40] CHEN Wen, FENG Juan, WU Renguang. Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon[J]. Journal of Climate, 2013, 26(2): 622-635. DOI: 10.1175/JCLI-D-12-00021.1
[41] 徐建军, 王东晓. 印度洋—太平洋海温的年际、代际异常及其对亚洲季风的影响. 海洋学报, 2000, 22(3): 34-43.[XU Jianjun, WANG Dongxiao. Diagnosis of interannual and interdecadal variation in SST over Indian-Pacific Ocean and numerical stimulation of their effects on Asian summer monsoon[J]. Acta Oceanologica Sinica, 2000, 22(3): 34-43]
[42] TANG Youmin, ZHANG Ronghua, LIU Ting, et al. Progress in ENSO prediction and predictability study[J]. National Science Review, 2018, 5: 826-839. DOI: 10.1093/nsr/nwy105
[43] STEINHILBER F, ABREU J A, BEER J, et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 5967-5971. DOI: 10.1073/pnas.1118965109
[44] 施雅风, 姜彤, 苏布达, 等. 1840年以来长江大洪水演变与气候变化关系初探[J]. 湖泊科学, 2004, 16(4): 289-297.[SHI Yafeng, JIANG Tong, SU Buda, et al. Preliminary analysis on the relation between the evolution of heavy floods in the Yangtze River catchment and climate changes since 1840[J]. Journal of Lake Sciences, 2004, 16(4): 289-297] DOI: 10.18307/2004.0400
[45] 姚檀栋, 段克勤, 田立德. 达索普冰芯累积量记录和过去400a印度夏季风降水变化[J]. 中国科学D辑(地球科学), 2000, 30(6): 619-627.[YAO Tandong, DUAN Keqin, TIAN Lide. Record of Dassop ice-core accumulation and variations in summer monsoon rainfall of India over past 400a[J]. Science in China(Earth Science), 2000, 30(6): 619-627] DOI: 10.1360/zd2000-30-6-619

相似文献/References:

[1]李中轩,吴国玺,孙艳丽,等.4.2~3.5 ka B.P.嵩山南麓的史前社会对逆向环境的适应[J].山地学报,2018,(06):833.[doi:10.16089/j.cnki.1008-2786.000379]
 LI Zhongxuan,WU Guoxi,SUN Yanli,et al.The Adaptation of Prehistoric Society of 4.2~3.5 ka B.P.to the Environment Stress in the Southern Songshan Mountain, China[J].Mountain Research,2018,(1):833.[doi:10.16089/j.cnki.1008-2786.000379]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023- 04-19; 改回日期(Accepted date):2024- 01-16
基金项目(Foundation item): 国家自然科学基金重大研究计划(90411015); 许昌学院科研开发基金(2023ZX001)。[The Major Research Plan of National Natural Science Foundation of China(90411015); Research Program of Xuchang University(2023ZX001)]
作者简介(Biography): 李中轩(1971-),男,河南渑池人,博士,主要研究方向:自然地理学。[LI Zhongxuan(1971-), male, born in Mianchi,Henan province, Ph.D., major in physical geography] E-mail: aysylzx@163.com
*通讯作者(Corresponding author): 朱诚(1954-),男,安徽歙县人,博士,教授,主要研究方向:第四纪地质学。[ZHU Cheng(1954-), male, born in Shexian, Anhui province, Ph.D., professor, research on quaternary geology] E-mail: zhuchengnj@126.com
更新日期/Last Update: 2024-01-30