[1]张文馨,王 欣*,冉伟杰,等.基于PS-InSAR技术的西藏龙巴萨巴湖冰碛坝表面形变特征分析及影响因素[J].山地学报,2024,(1):60-69.[doi:10.16089/j.cnki.1008-2786.000804]
 ZHANG Wenxin,WANG Xin*,RAN Weijie,et al.Surface Deformation Detection of the Moraine Dam of the Longbasaba Lake in Tibet of China Based on PS-InSAR Technique and Associated Influencing Factors[J].Mountain Research,2024,(1):60-69.[doi:10.16089/j.cnki.1008-2786.000804]





Surface Deformation Detection of the Moraine Dam of the Longbasaba Lake in Tibet of China Based on PS-InSAR Technique and Associated Influencing Factors
张文馨1王 欣1*冉伟杰12魏俊锋1刘 巧3
(1. 湖南科技大学 地球科学与空间信息工程学院,湖南 湘潭 411201; 2. 长沙天仪空间科技研究院有限公司,长沙 410000; 3.中国科学院、水利部成都山地灾害与环境研究所,成都 610299 )
ZHANG Wenxin1 WANG Xin1* RAN Weijie12 WEI Junfeng1 LIU Qiao3
(1. School of Earth Science and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China; 2. Changsha Tianyi Space Technology Research Institute Co., Ltd., Changsha 410000, China; 3. Chengdu Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu 610029, China)
形变监测 表面沉降 PS-InSAR 冰碛坝 龙巴萨巴湖
deformation monitoring surface subsidence PS-InSAR moraine dam the Longbasaba Lake
冰碛湖坝体表面形变是指示坝体稳定性的重要参数。针对高寒区冰碛坝形变监测,合成孔径雷达干涉测量(InSAR)技术仍然存在一定的技术缺陷,而基于永久散射体合成孔径雷达干涉测量(PS-InSAR )的遥感技术方面应用尚未见报道。西藏龙巴萨巴湖位于中国和印度、尼泊尔交界处,其冰碛坝具有高溃决风险。本文基于75景Sentinel-1A影像及PS-InSAR技术,以龙巴萨巴湖冰碛坝为研究对象,分析2017年2月至2023年4月期间,坝体表面形变特征及影响因素。结果表明:(1)2017 —2023年龙巴萨巴坝表面体总体呈下沉趋势,平均形变速率为-2.76±0.66 mm/a。坝体明显表面下降区主要分布沿湖水岸一带,占坝体总面积的43.3%,平均下沉速率为16.82±1.55 mm/a,坝体中部存在东南—西北贯通的显著沉降区,其中最大形变永久散射点(PS点)形变速率达到-81 mm/a; 中部坝体出现抬升现象,抬升区面积占坝体总面积的9.8%,平均抬升速率为17.38±2.43 mm/a,其中最大形变PS点形变速率达到43.90 mm/a; 坝体外缘区变形率相对较小,在-4~4 mm/a内波动(平均形变速率为0.53±0.23 mm/a),占坝体总面积的41.11%。(2)在监测时间段内,年内不同月份沉降区面积占比为39.1%~65.8%,其中, 7月沉降面积最大,占坝体总面积的65.8%; 年内抬升区面积占总面积比的22.3%~38.3%,2月份坝体抬升面积最大。(3)坝体表面总体形变与坝体热通量年收支盈余、坝体内部埋藏冰发育、内部水分运移冻胀等因素有关。本研究结论可用于评估龙巴萨巴冰碛湖的危险性,为冰碛湖溃决模拟及防灾减灾提供理论依据。
Surface deformation of a moraine dam is usually used as an estimation of its stability. For the deformation monitoring of moraine dam in alpine region, the technology of Synthetic Aperture Radar(InSAR)still has some technical defects in spite of its popularity, while the application of remote sensing technology based on Persistent Scatterer Interferometric Synthetic Aperture Radar(PS-InSAR)has not been reported yet. Located at the border between China and India and Nepal, the Longbasaba Lake is exhibiting the high risk of moraine dam failure.
In this study, based on 75 Sentinel-1A images and PS-InSAR technology, it analyzed the dynamic deformation of the moraine dam of the Longbasaba Lake from February 2017 to April 2023.
(1)In 2017-2023, there was a tendency for the Longbasaba Lake dam to subside at an average deformation rate of -2.76±0.66 mm/a. The distinct surface subsidence place in the dam was mainly distributed along the lake bank, accounting for 43.3% of the total surface area of the dam body, with an average subsidence rate of 16.82±1.55 mm/a. In the middle of the dam, there was a noticeable subsidence zone transversally running southeast-northwest, with the maximum deformation permanent scattering point(PS point)at -81 mm/a. The central dam suffered an uplift, with an uplift area accounting for 9.8% of the total area of the dam body. The average uplift rate was 17.38±2.43 mm/a, and the maximum deformation PS point deformation rate reached 43.90 mm/a. On the outer edge of the dam, the deformation rate was relatively low, fluctuating within -4~4 mm/a and an average deformation rate of 0.53±0.23 mm/a, accounting for 41.11% of the total.
(2)In 2017-2023, the subsidence area in different months in a year accounted for 39.1%~65.8%, among which the subsidence size in July was the largest, accounting for 65.8% of the total, whereas the uplifting area accounted for 22.3%~38.3% of the total area, with the largest one occurred in February.
(3)Surface deformation of the moraine dam of the Longpasaba Lake had a close connection with some geo-physical settings, including the surplus of annual revenue and expenditure of heat flux of the dam body, the variation of buried ice inside the dam body, and the freezing and swelling of the migrated internal water.
The results above can be applicable in risk evaluation of moraine lake so as to provide a theoretical basis for the simulation of moraine lake outburst and disaster prevention and mitigation.


[1] HAEBERLI W, KÄÄB A, MÜHLL D V, et al. Prevention of outburst floods from periglacial lakes at Grubengletscher, Valais, Swiss Alps[J]. Journal of Glaciology, 2001, 47(156): 111-122. DOI: 10.3189/172756501781832575
[2] 石振明, 李建可, 鹿存亮, 等. 堰塞湖坝体稳定性研究现状及展望[J]. 工程地质学报, 2010, 18(5): 657-663.[SHI Zhenming, LI Jianke, LU Cunliang, et al. Research status and prospect of the stability of landslide dam[J]. Journal of Engineering Geology, 2010, 18(5): 657-663] DOI: 10.3969/j.issn.1004-9665.2010.05.008
[3] WANG Xin, LIU Shiyin, DING Yongjian, et al. An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data[J]. Natural Hazards and Earth System Sciences, 2012, 12(10): 3109-3122. DOI: 10.5194/nhess-12-3109-2012
[4] WATANABE T, KAMEYAMA S, SATO T. IMJA glacier dead-ice melt rates and changes in a supra-glacial lake, 1989-1994, Khumbu Himal, Nepal: Danger of lake drainage[J]. Mountain Research and Development, 1995, 15(4): 293-300. DOI: 10.2307/3673805
[5] 徐道明, 冯清华. 西藏喜马拉雅山区危险冰湖及其溃决特征[J]. 地理学报, 1989, 44(3): 343-352.[XU Daoming, FENG Qinghua. Dangerous glacial lake and outburst features in Xizang Himalayas[J]. Acta Geographica Sinica, 1989, 44(3): 343-352] DOI: 10.11821/xb198903010
[6] 刘建康, 周路旭. 国内外冰碛湖溃决研究进展[J]. 探矿工程(岩土钻掘工程), 2018, 45(8): 44-50.[LIU Jiankang, ZHOU Luxu. Research progress on moraine dammed lake outburst flood[J]. Exploration Engineering(Rock and Soil Drilling and Tunneling), 2018, 45(8): 44-50] DOI: 10.3969/j.issn.1672-7428.2018.08.010
[7] NEUPANE R, CHEN Huayong, CAO Chunran. Review of moraine dam failure mechanism[J]. Geomatics, Natural Hazards and Risk, 2019, 10(1): 1948-1966. DOI: 10.1080/19475705.2019.1652210
[8] 王欣, 蒋亮虹, 刘时银, 等. 喜马拉雅山北坡冰碛湖坝温度特征及其对堤坝稳定的影响[J]. 冰川冻土, 2014,36(6): 1517-1525.[WANG Xin, JIANG Lianghong, LIU Shiyin, et al. Temperature features of a moraine-dam on north slopes of the Himalayas and their effect on dam stability[J]. Journal of Glaciology and Geocryology, 2014, 36(6): 1517-1525] DOI: 10.7522/j.issn.1000-0240.2014.0182
[9] 张太刚, 王伟财, 高坛光, 等. 亚洲高山区冰湖溃决洪水事件回顾[J]. 冰川冻土, 2021, 43(6): 1673-1692.[ZHANG Taigang, WANG Weicai, GAO Tanguang, et al. Glacial lake outburst floods on the High Mountain Asia: A review[J]. Journal of Glaciology and Geocryology, 2021, 43(6): 1673-1692] DOI: 10.7522/j.issn.1000-0240.2021.0066
[10] LIU Lin, ZHANG Tingjun, WAHR J. InSAR measurements of surface deformation over permafrost on the north slope of Alaska[J]. Journal of Geophysical Research: Earth Surface, 2010, 115: F03023. DOI: 10.1029/2009JF001547
[11] ANTONOVA S, SUDHAUS H, STROZZI T, et al. Thaw subsidence of a yedoma landscape in northern Siberia, measured in situ and estimated from TerraSAR-X interferometry[J]. Remote Sensing, 2018, 10(4): 494. DOI: 10.3390/rs10040494
[12] DAOUT S, DOIN M P, PELTZER G, et al. Large scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(2): 901-909. DOI: 10.1002/2016GL070781
[13] 王志红, 任金铜, 范成成, 等. Sentinel-1A在西南煤矿区地表沉陷监测中的适用性分析[J]. 地球物理学进展, 2021, 36(6): 2339-2350.[WANG Zhihong, REN Jintong, FAN Chengcheng, et al. Applicability analysis of Sentinel-1A in surface subsidence monitoring in southwest coal mining area[J]. Progress in Geophysics, 2021, 36(6): 2339-2350] DOI: 10.6038/pg2021EE0577
[14] 熊文秀, 冯光财, 李志伟, 等. 顾及时空特性的SBAS高质量点选取算法[J]. 测绘学报, 2015, 44(11): 1246-1254.[XIONG Wenxiu, FENG Guangcai, LI Zhiwei, et al. High quality targets selection in SBAS-InSAR technique by considering temporal and spatial characteristics[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1246-1254] DOI: 10.11947/j.AGCS.2015.20140547
[15] 熊鹏, 左小清, 李勇发, 等. InSAR技术在高速公路灾害辅助识别中的应用[J]. 测绘通报, 2020(8): 87-91.[XIONG Peng, ZUO Xiaoqing, LI Yongfa, et al. Application of InSAR technology in auxiliary identification of expressway disasters[J]. Bulletin of Surveying and Mapping, 2020(8): 87-91] DOI: 10.13474/j.cnki.11-2246.2020.0254
[16] WANG Jia, WANG Xin, ZHANG Yanlin, et al. Simulation of freeze-thaw and melting of buried ice in Longbasaba moraine dam in the central Himalayas between 1959 and 2100 using COMSOL multiphysics[J]. Journal of Geophysical Research: Earth Surface, 2023, 128(3): e2022JF006848. DOI: 10.1029/2022JF006848
[17] 肖序常, 王军. 青藏高原构造演化及隆升的简要评述[J]. 地质论评, 1998, 44(4): 372-381.[XIAO Xuchang, WANG Jun. A brief review of tectonic evolution and uplift of the Qinghai-Tibet Plateau[J]. Geological Review, 1998, 44(4): 372-381] DOI: 10.16509/j.georeview.1998.04.006
[18] 汪汉胜, WU Patrick, 许厚泽. 冰川均衡调整(GIA)的研究[J]. 地球物理学进展, 2009, 24(6): 1958-1967.[WANG Hansheng, WU P, XU Houze. A review of research in glacial isostatic adjustment[J]. Progress in Geophysics, 2009, 24(6): 1958-1967] DOI: 10.3969/j.issn.1004-2903.2009.06.005
[19] 张特, 魏俊锋, 张勇, 等. 1988-2018年喜马拉雅山中部龙巴萨巴冰川变化数据集[J]. 中国科学数据(中英文网络版), 2021, 6(4): 84-94.[ZHANG Te, WEI Junfeng, ZHANG Yong, et al. A dataset for annual changes of Longbasaba Glacier in the central Himalayas from 1988-2018[J]. Chinese Science Data(Chinese-English Web Edition), 2021, 6(4): 84-94] DOI: 10.11922/11-6035.csd.2021.0051.zh
[20] WEI Junfeng, LIU Shiyin, WANG Xin, et al. Longbasaba Glacier recession and contribution to its proglacial lake volume between 1988 and 2018[J]. Journal of Glaciology, 2021, 67(263): 473-484. DOI: 10.1017/jog.2020.119
[21] WANG Xin, LIU Shiyin, GUO Wanqin, et al. Assessment and simulation of glacier lake outburst floods for Longbasaba and Pida Lakes, China[J]. Mountain Research and Development, 2008, 28(3): 310-317. DOI: 10.1659/mrd.0894
[22] 刘国祥, 陈强, 罗小军, 等. InSAR原理与应用[M]. 北京: 科学出版社, 2019: 160-171, 218-219.[LIU Guoxiang, CHEN Qiang, LUO Xiaojun, et al. InSAR principles and applications[M]. Beijing: Science Press, 2019: 160-171, 218-219]
[23] 刘世博, 赵林, 汪凌霄, 等. InSAR技术在多年冻土区形变监测的应用[J]. 冰川冻土, 2021,43(4): 964-975.[LIU Shibo, ZHAO Lin, WANG Lingxiao, et al. Application of InSAR technology in monitoring deformation in permafrost areas[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 964-975] DOI: 10.7522/j.issn.1000-0240.2021.0033
[24] WANG Xin, YANG Chengde, ZHANG Yanlin, et al. Monitoring and simulation of hydrothermal conditions indicating the deteriorating stability of a perennially frozen moraine dam in the Himalayas[J]. Journal of Glaciology, 2018, 64(245): 407-416. DOI: 10.1017/jog.2018.38
[25] SHAO Yawu, SUO Yonglu, XIAO Jiang, et al. Creep characteristic test and creep model of frozen soil[J]. Sustainability, 2023, 15(5): 3984. DOI: 10.3390/su15053984
[26] GAO Qiang, WEN Zhi, ZHOU Zhiwei, et al. A creep model of pile-frozen soil interface considering damage effect and ice effect[J]. International Journal of Damage Mechanics, 2022, 31(1): 3-21. DOI: 10.1177/10567895211019067
[27] WANG Pan, LIU Enlong, ZHI Bin, et al. Creep characteristics and unified macro-meso creep model for saturated frozen soil under constant/variable temperature conditions[J]. Acta Geotechnica, 2022, 17(11): 5299-5319. DOI: 10.1007/s11440-022-01586-6
[28] TAI Bowen, WU Qingbai, YUE Zurun, et al. Ground temperature and deformation characteristics of anti-freeze-thaw embankments in permafrost and seasonal frozen ground regions of China[J]. Cold Regions Science and Technology, 2021, 189: 103331. DOI: 10.1016/j.coldregions.2021.103331
[29] ZHANG Peng, CHEN Yan, CHEN Yunping. Permafrost stability and land surface temperature distribution study using multi-source remote sensing data in the Qinghai-Tibet Plateau[C]. IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur, Malaysia: IEEE, 2022: 3915-3918. DOI: 10.1109/IGARSS46834.2022.9884765
[30] ZHANG Feng, SHI Sheng, FENG Decheng, et al. Investigation on creep behavior of warm frozen silty sand under thermo-mechanical coupling loads[J]. Journal of Mountain Science, 2021, 18(7): 1951-1965. DOI: 10.1007/s11629-020-6411-x
[31] NEAUPANE K M, YAMABE T, YOSHINAKA R. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5): 563-580. DOI: 10.1016/S0148-9062(99)00026-1
[32] ZHANG Zhongqiong, LI Miao, WEN Zhi, et al. Degraded frozen soil and reduced frost heave in China due to climate warming[J]. Science of the Total Environment, 2023, 893: 164914. DOI: 10.1016/j.scitotenv.2023.164914
[33] BLIKRA L H, CHRISTIANSEN H H. A field-based model of permafrost-controlled rockslide deformation in northern Norway[J]. Geomorphology, 2014, 208: 34-49. DOI: 10.1016/j.geomorph.2013.11.014
[34] HARRISON S, KARGEL J S, HUGGEL C, et al. Climate change and the global pattern of moraine-dammed glacial lake outburst floods[J]. The Cryosphere, 2018, 12(4): 1195-1209. DOI: 10.5194/tc-12-1195-2018
[35] LANGSTON G, BENTLEY L R, HAYASHI M, et al. Internal structure and hydrological functions of an alpine proglacial moraine[J]. Hydrological Processes, 2011, 25(19): 2967-2982. DOI: 10.1002/hyp.8144
[36] CHEN Wanxin, WU Jianying. Phase-field cohesive zone modeling of multi-physical fracture in solids and the open-source implementation in Comsol Multiphysics[J]. Theoretical and Applied Fracture Mechanics, 2022, 117: 103153. DOI: 10.1016/j.tafmec.2021.103153
[37] HAUCK C, VIEIRA G, GRUBER S, et al. Geophysical identification of permafrost in Livingston Island, maritime Antarctica[J]. Journal of Geophysical Research: Earth Surface, 2007, 112: F02S19. DOI: 10.1029/2006JF000544
[38] 吴冰, 朱鸿鹄, 曹鼎峰, 等. 基于主动加热光纤法的冻土相变温度场特征分析[J]. 工程地质学报, 2019, 27(5): 1093-1100.[WU Bing, ZHU Honghu, CAO Dingfeng, et al. Investigation of phase change temperature field in frozen soil based on actively heated fiber optics method[J]. Journal of Engineering Geology, 2019, 27(5): 1093-1100] DOI: 10.13544/j.cnki.jeg.2019135


收稿日期(Received date): 2023-12-22; 改回日期(Accepted date):2024- 02-13
基金项目(Foundation item): 国家自然科学基金(U23A2011, 42171137)[National Natural Science Foundation of China(U23A2011, 42171137)]
作者简介(Biography): 张文馨(1998-),女,山东临沂人,硕士研究生,主要研究方向:冰冻圈灾害。[ZHANG Wenxin(1998-), female, born in Linyi, Shandong province, M.Sc. candidate, research on cryospheric disaster] E-mail: 21010104020@mail.hnust.edu.cn
*通讯作者(Corresponding author): 王欣(1973-), 男, 湖南耒阳人, 博士, 教授, 主要研究方向:地理环境遥感、冰川水文与灾害。[WANG Xin(1973-), male, born in leiyang, Hunan province, Ph.D., professor, research on remote sensing of geographical environment and glacial hydrology and hazards] E-mail: wangx@hnust.edu.cn
更新日期/Last Update: 2024-01-30