[1]王 浩,等.闽粤地区花岗岩风化土体粘粒迁移过程的土柱渗流试验[J].山地学报,2024,(1):132-142.[doi:10.16089/j.cnki.1008-2786.000810]
 WANG Hao,,et al.Soil Solumn Seepage Test on Clay Particles Migration Process of Granite Weathered Soil in Fujian and Guangdong Areas,China[J].Mountain Research,2024,(1):132-142.[doi:10.16089/j.cnki.1008-2786.000810]
点击复制

闽粤地区花岗岩风化土体粘粒迁移过程的土柱渗流试验
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第1期
页码:
132-142
栏目:
山地技术
出版日期:
2024-03-25

文章信息/Info

Title:
Soil Solumn Seepage Test on Clay Particles Migration Process of Granite Weathered Soil in Fujian and Guangdong Areas,China
文章编号:
1008-2786-(2024)1-132-11
作者:
王 浩1 2 3许少鸿1 2 3陈叶健1 2 3徐陈灵1 2 3黄瑛瑛2 3
(1. 福州大学 紫金地质与矿业学院,福州 350108; 2. 福建省地质工程勘察院 福建省地质灾害重点实验室,福州 350002; 3. 福建省地质矿产勘查开发局 自然资源部丘陵山地地质灾害防治重点实验室,福州 350002)
Author(s):
WANG Hao1 2 3 XU Shaohong1 2 3 CHEN Yejian1 2 3 XU Chenling1 2 3 HUANG Yingying2 3
(1. Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China; 2. Key Laboratory of Geohazard, Fujian Province, Geological Engineering Survey in Fujian Provice, Fuzhou 350002, China; 3. Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources of China, Fujian Provincial Bureau of Geology and Mineral Exploration and Development, Fuzhou 350002, China)
关键词:
花岗岩风化土 颗粒级配 粘粒迁移 颗粒粗化 闽粤地区
Keywords:
granite weathered soil particle gradation clay particles migration particle coarsening Fujian-Guangdong region
分类号:
P642.24
DOI:
10.16089/j.cnki.1008-2786.000810
文献标志码:
A
摘要:
花岗岩风化土具有大孔隙结构、级配不良的特性。降雨入渗驱动粘粒迁移导致花岗岩风化土内部孔隙扩张和颗粒粗化,是闽粤地区花岗岩分布区水土流失和边坡变形破坏的主因。本文设计土柱渗流模型试验,研究不同级配条件下花岗岩风化土体的粘粒迁移过程与特征,考察土粒含量、渗流量及水力梯度等指标的变化规律。研究表明:(1)含有较多粘土矿物成分的细粒,尤其是粒径小于5 μm的具有良好亲水性的粘粒,在渗流作用下容易发生迁移、集聚、淤堵或再迁移过程,导致渗流量与水力梯度持续变化,逐步出现土体颗粒粗化现象;(2)随着砾粒含量的增加,内部土粒单元发育成形的“混粒性”孔隙-骨架结构更为明显; 当砾粒含量从40%增加至60%时,粘粒流失量增加14%,渗流量增加了51%,土体渗流通道增多、土体颗粒粗化,土体结构性逐步丧失;(3)花岗岩风化土中粘粒迁移过程由稳定渗流状态向优势渗流状态转变引起,一旦优势流通道成立,水力梯度增幅可达40%。研究结论可为闽粤地区花岗岩分布区水土流失治理和边坡灾害防治提供科学依据。
Abstract:
Granite weathered soil is characterized by large pore structure and poor grading. Rainfall infiltration drives migration of clay particles, accompanying by expansion of internal pores and particle coarsening in granite weathered soil, which was recognized as the main explanation for soil-water loss and slope deformation or failure in granite area of Fujian-Guangdong region, China.
In this study, a soil column seepage model experiment was designed to investigate the process and characteristics of clay particle migration in granite weathered soil under different soil grading conditions, in which the variations of soil composition, seepage discharge, and hydraulic gradient were traced for interpretation.
(1)Under seepage drive, fine particles with a higher content of clay minerals in the soil, especially clay particles with a particle size smaller than 5 μm and good hydrophilicity, were prone to migration, aggregation, clogging, or re-organization processes, leading to continuous changes in seepage discharge and hydraulic gradient, then grain coarsening emerging.
(2)With the increase of gravel content in the soil, internal soil particle unit developed into more distinct “mixed-grain” porous skeleton. In case of gravel content increasing from 40% up to 60%, clay particles were leached away up to a 14% of mass of loss, with seepage discharge increases by 51%. More seepage channels developed, more grain coarsening intensified, and progressively soil structure came to collapsing.
(3)Clay particle migration in granite weathered soil was caused by the transition from a stable seepage state to a dominant seepage state. Once dominant flow channels were formed, the hydraulic gradient could increase by 40%.
This study provides scientific basis for erosion control and slope prevention in granite area of Fujian-Guangdong region, China.

参考文献/References:

[1] 崔之久, 杨建强, 陈艺鑫. 中国花岗岩地貌的类型特征与演化[J]. 地理学报, 2007, 62(7): 675-690.[CUI Zhijiu,YANG Jianqiang, CHEN Yixin. The type and evolution of the granite landforms in China[J]. Acta Geographica Sinica, 2007, 62(7): 675-690] DOI: 10.3321/j.issn:0375-5444.2007.07.001
[2] 王清, 唐大雄, 张庆云, 等. 中国东部花岗岩残积土物质成分和结构特征的研究[J]. 长春地质学院学报, 1991, 21(1): 73-81.[WANG Qing, TANG Daxiong, ZHANG Qingyun, et al. A study on the structure and composition of granite residual soil in the eastern China[J]. Journal of Changchun University of Earth Science, 1991, 21(1): 73-81]
[3] 黄润秋, 徐则民, 许模. 地下水的致灾效应及异常地下水流诱发地质灾害[J]. 地球与环境, 2005, 33(3): 1-9.[HUANG Runqiu, XU Zeming, XU Mo. Hazardous effects of underground water and extraordinary water flow-induced geohazards[J]. Earth and Environment, 2005, 33(3): 1-9] DOI: 10.3969/j.issn.1672-9250.2005.03.001
[4] LOURENÇO S D N, SASSA K, FUKUOKA H. Failure process and hydrologic response of a two layer physical model: Implications for rainfall-induced landslides[J]. Geomorphology, 2006, 73(1): 115-130. DOI: 10.1016/j.geomorph.2005.06.004
[5] 矫滨田, 鲁晓兵, 王淑云, 等. 土体降雨滑坡中细颗粒运移及效应[J]. 地下空间与工程学报, 2005, 1(6): 36-38.[JIAN Bingtian, LU Xiaobing, WANG Shuyun, et al. The movement of fine grains and its effects on the landslide and debris flow caused by raining[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(6): 36-38] DOI: 10.3969/j.issn.1673-0836.2005.z1.010
[6] 王志兵, 汪稔, 胡明鉴, 等. 颗粒运移对蒋家沟土体渗透性影响的试验研究[J]. 岩土力学, 2011, 32(7): 2017-2024.[WANG Zhibing, WANG Ren, HU Mingjina, et al. Effects of particle transport characteristics on permeability of soils from Jiangjiagou ravine[J]. Rock and Soil Mechanics, 2011, 32(7): 2017-2024] DOI: 10.16285/j.rsm.2011.07.012
[7] OHTSU H, PIPATPONGSA T, KITAOKA T, et al. Characteristics of fine particle distribution at cut slope and fill slope comprising weathered granite[J]. Materials Transactions, 2018, 59(11): 1723-1730. DOI: 10.2320/matertrans.Z-M2018839
[8] INDRARATNA B, NGUYEN V T, RUJIKIATKAMJORN C. Assessing the potential of internal erosion and suffusion of granular soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(5): 550-554. DOI: 10.1061/(ASCE)GT.1943-5606.0000447
[9] TO P, SCHEUERMANN A, WILLIAMS D J. Quick assessment on susceptibility to suffusion of continuously graded soils by curvature of particle size distribution[J]. Acta Geotechnica, 2018, 13(5): 1241-1248. DOI: 10.1007/s11440-017-0611-8
[10] TOMLINSON S S, VAID Y P. Seepage forces and confining pressure effects on piping erosion[J]. Canadian Geotechnical Journal, 2000, 37(1): 1-13. DOI: 10.1139/t99-116
[11] 蒋思晨, 白冰. 悬浮颗粒形状对其在多孔介质中迁移和沉积特性的影响[J]. 岩土力学, 2018, 39(6): 2043-2051.[JIANG Sichen, BAI Bing. Influence of particle shape on the suspended particle transport and deposition in porous media[J]. Rock and Soil Mechanics, 2018, 39(6): 2043-2051] DOI: 10.16285/j.rsm.2017.2211
[12] 宋晓明. 渗透作用下多孔介质中颗粒迁移特性试验研究[D]. 北京: 北京交通大学, 2014: 23-32.[SONG Xiaoming. Laboratory test on particle transport in porous media under seepage effect[D]. Beijing: Beijing Jiaotong University, 2014: 23-32.] DOI: 10.7666/d.Y2734911
[13] MOFFAT R, FANNIN R J, GARNER S J. Spatial and temporal progression of internal erosion in cohesionless soil[J]. Canadian Geotechnical Journal, 2011,48(3): 399-412. DOI: 10.1139/T10-071
[14] PACHIDEH V, HOSSEINI S M M M. A new physical model for studying flow direction and other influencing parameters on the internal erosion of soils[J]. Geotechnical Testing Journal, 2019, 42(6): 1431-1456. DOI: 10.1520/GTJ20170301
[15] 黄德文, 陈建生, 陈亮, 等. 均质无黏性土流土发生机制室内模型试验研究[J]. 岩石力学与工程学报, 2015, 34(S1): 3424-3431.[HUANG Dewen, CHEN Jiansheng, CHEN Liang, et al. Experimental study of the mechanism of flowing soil for homogeneous cohesionless soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3424-3431] DOI: 10.13722/j.cnki.jrme.2013.1797
[16] 张升, 高峰, 陈琪磊, 等. 砂-粉土混合料在列车荷载作用下细颗粒迁移机制试验[J]. 岩土力学, 2020, 41(5): 1591-1598.[ZHANG Sheng, GAO Feng, CHEN Qilei, et al. Experimental study of fine particles migration mechanism of sand-silt mixtures under train load[J]. Rock and Soil Mechanics, 2020, 41(5): 1591-1598] DOI: 10.16285/j.rsm.2019.0690
[17] 颜波, 汤连生, 胡辉, 等. 花岗岩风化土崩岗破坏机理分析[J]. 水文地质工程地质, 2009, 36(6): 68-71+84.[YAN Bo, TANG Liansheng, HU Hui, et al. The mechanism of disintegration damage of granite weathered soil[J]. Hydrogeology and Engineering Geology, 2009, 36(6): 68-71+84] DOI: 10.3969/j.issn.1000-3665.2009.06.015
[18] LIANG Y, YEH T C J, MA C, et al. Experimental investigation of internal erosion behaviors in inclined seepage flow[J]. Hydrological Processes, 2020, 34(26): 5315-5326. DOI: 10.1002/hyp.13944
[19] 陈亮, 滕耀宗, 蔡国栋, 等. 变水头下管涌细颗粒迁移试验[J]. 河海大学学报(自然科学版), 2022, 50(5): 82-88.[CHEN Liang, TENG Yaozong, CAI Guodong, et al. Experimental study on the migration of fine particles in piping under variable water head[J]. Journal of Hohai University(Natural Sciences), 2022, 50(5): 82-88] DOI: 10.3876/j.issn.1000-1980.2022.05.011
[20] 梁越, 代磊, 魏琦. 基于透明土和粒子示踪技术的渗流侵蚀试验研究[J]. 岩土工程学报, 2022, 44(6): 1133-1140.[LIANG Yue, DAI Lei, WEI Qi. Experimental study on seepage erosion based on transparent soil and particle tracing technology[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1133-1140] DOI: 10.11779/CJGE202206018
[21] 蒋中明, 王为, 冯树荣, 等. 应力状态下含黏粗粒土渗透变形特性试验研究[J]. 岩土工程学报, 2014, 36(1): 98-104.[JIANG Zhongming, WANG Wei, FENG Shurong, et al. Experimental study on influence of stress state on seepage failure characteristics of coarse grained soil with cohesive particles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 98-104] DOI: 10.11779/CJGE201401008
[22] STERPI D. Effects of the erosion and transport of fine particles due to seepage flow[J]. International Journal of Geomechanics, 2003, 3(1): 111-122. DOI: 10.1061/(ASCE)1532-3641(2003)3:1(111)
[23] BENDAHMANE F, MAROT D, ALEXIS A. Experimental parametric study of suffusion and backward erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(1): 57-67. DOI: 10.1061/(ASCE)1090-0241(2008)134:1(57)
[24] MOFFAT R. Experiments on the internal stability of widely graded cohesionless soils[D]. Vancouver: The University of British Columbia(Canada), 2005: 178-206. DOI: hdl.handle.net/2429/17146
[25] TAO Junliang, TAO Hui. Factors affecting piping erosion resistance: Revisited with a numerical modeling approach[J]. International Journal of Geomechanics, 2017, 17(11): 04017097. DOI: 10.1061/(ASCE)GM.1943-5622.0000999
[26] 王宇. 基于流固耦合理论的管涌侵蚀机理细观数值模拟[D]. 西安: 西安理工大学, 2020: 34-45.[WANG Yu. Numerical simulation of piping erosion mechanism based on fluid-solid coupling theory[D]. Xi'an: Xi'an University of Technology, 2020: 34-45] DOI: 10.27398/d.cnki.gxalu.2020.000183
[27] 周健, 姚志雄, 张刚. 管涌发生发展过程的细观试验研究[J]. 地下空间与工程学报, 2007, 3(5): 842-848.[ZHOU Jian, YAO Zhixiong, ZHANG Gang. Meso-laboratory study on initiation and evolution of piping[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(5): 842-848] DOI: 10.3969/j.issn.1673-0836.2007.05.012
[28] 熊传祥, 王涛, 鲁晓兵. 降雨作用下崩岗形成细观机理模拟[J]. 山地学报, 2013,31(6): 710-715.[XIONG Chuanxiang, WANG Tao, LU Xiaobing. Meso-mechanical simulation of slope disintegration erosion under rainfall[J]. Mountain Research, 2013, 31(6): 710-715] DOI: 10.16089/j.cnki.1008-2786.2013.06.009
[29] 尚岳全, 孙红月, 侯利国, 等. 管网渗流系统对含碎石粘性土边坡的稳定作用[J]. 岩石力学与工程学报, 2005,24(8): 1371-1375.[SHANG Yuequan, SUN Hongyue, HOU Liguo, et al. Study on the stability of pebbly clay slopes with pipe drainage system[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 1371-1375] DOI: 10.3321/j.issn:1000-6915.2005.08.015
[30] 庄建琦, 崔鹏, 胡凯衡, 等. 细颗粒迁移在泥石流形成过程中的作用[J]. 山地学报, 2015, 33(6): 713-720.[ZHUANG Jianqi, CUI Peng, HU Kaiheng, et al. Fine particle size moving and it's effective on debris flow initiation[J]. Mountain Research, 2015, 33(6): 713-720] DOI: 10.16089/j.cnki.1008-2786.000086

相似文献/References:

[1]李天话,樊晓一*,姜元俊.岩土体颗粒级配对滑坡碎屑流冲击作用的影响研究[J].山地学报,2018,(02):289.[doi:10.16089/j.cnki.1008-2786.000324]
 LI Tianhua,FAN Xiaoyi,JIANG Yuanjun.Influence of Gradation on the Impact Effect of Landslide Debris Flow[J].Mountain Research,2018,(1):289.[doi:10.16089/j.cnki.1008-2786.000324]
[2]李天话,樊晓一*,姜元俊.不同颗粒级配滑坡碎屑流等效冲击力及作用位置分布研究[J].山地学报,2018,(05):740.[doi:10.16089/j.cnki.1008-2786.000370]
 LI Tianhua,FAN Xiaoyi*,JIANG Yuanjun.Study on Equivalent Impact Force and Impact Distribution Range of Landslide Debris Flow with Different Gradation[J].Mountain Research,2018,(1):740.[doi:10.16089/j.cnki.1008-2786.000370]
[3]张志东,樊晓一*,姜元俊.岩土体颗粒级配对滑坡碎屑流冲击力力链特征的影响[J].山地学报,2020,(3):402.[doi:10.16089/j.cnki.1008-2786.000520]
 ZHANG Zhidong,FAN Xiaoyi*,JIANG Yuanjun.Effect of Granularity of Rock and Soil Mass on Regularity of Impact Force Chain in a Fluidized Landslide[J].Mountain Research,2020,(1):402.[doi:10.16089/j.cnki.1008-2786.000520]

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-12- 08; 改回日期(Accepted date):2023-11- 06
基金项目(Foundation item): 国家自然科学基金(41972268); 福建省高校产学研联合创新项目(2022Y4002); 福建省地质灾害重点实验室自主课题(KLGHZ202105)。[National Natural Science Foundation of China(41972268); Science and Technology Department of Fujian Province(2022Y4002); Key Laboratory of Geohazard, Fujian Province(KLGHZ202105)]
作者简介(Biography): 王浩(1978-), 男, 博士, 教授, 主要研究方向:岩土工程与工程地质。[WANG Hao(1978-), male, Ph.D., professor, research on geotechnical engineering and engineering geology] E-mail: h_wang@126.com
更新日期/Last Update: 2024-01-30