[1]王智昊abcd,杨赛霓ab*,姚可桢abcd,等.四川秦巴山区降雨型滑坡灾害降雨阈值[J].山地学报,2024,(2):238-248.[doi:10.16089/j.cnki.1008-2786.000819]
 WANG Zhihaoabcd,YANG Sainiab*,YAO Kezhenabcd,et al.Precipitation Threshold for Rainfall-Type Landslides in the Qinba Mountains Area, Sichuan Province, China[J].Mountain Research,2024,(2):238-248.[doi:10.16089/j.cnki.1008-2786.000819]
点击复制

四川秦巴山区降雨型滑坡灾害降雨阈值
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第2期
页码:
238-248
栏目:
山地灾害
出版日期:
2024-06-15

文章信息/Info

Title:
Precipitation Threshold for Rainfall-Type Landslides in the Qinba Mountains Area, Sichuan Province, China
文章编号:
1008-2786-(2024)2-238-11
作者:
王智昊1a1b1c1d杨赛霓1a1b*姚可桢1a1b1c1d佟 彬2唐得胜3
(1. 北京师范大学 a. 教育部巨灾模拟与系统性风险应对国际合作联合实验室,广东 珠海 519087; b. 国家安全与应急管理学院; c. 地理科学学部; d. 环境演变与自然灾害教育部重点实验室,北京 100875; 2. 中国地质环境监测院,北京 100081; 3. 四川省国土空间生态修复与地质灾害防治研究院,成都 610081)
Author(s):
WANG Zhihao1a1b1c1dYANG Saini1a1b*YAO Kezhen1a1b1c1dTONG Bin2TANG Desheng3
(1. a. Joint International Research Laboratory of CatastropheSimulation and Systemic Risk Governance, Zhuhai 519087, Guangdong, China; b. School of National Safety and Emergency Management; c. Faculty of Geographical Science; d. Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China; 2. China Institute of Geoenvironment Monitoring, Beijing 100081, China; 3. Sichuan Institute of Land Space Ecological Restoration and Geological Disaster Prevention, Chengdu 610081, Sichuan, China)
关键词:
降雨型滑坡 降雨阈值 气象预警 秦巴山区
Keywords:
rainfall-induced landslide precipitation threshold landslide early warning the Qinba Mountains area
分类号:
X43
DOI:
10.16089/j.cnki.1008-2786.000819
文献标志码:
A
摘要:
四川省秦巴山区因其复杂地形和频发的极端降雨,成为中国滑坡灾害高发区,降雨是其主要自然致灾因素之一。尽管现有区域滑坡预警系统提供了基本的监测,但在准确性方面仍有提升空间。本研究通过分析 2000—2020年间1850起滑坡灾害及同期逐时降雨数据,识别影响滑坡发生的关键降雨特征,采用混淆矩阵和技能得分等评价指标,拟合筛选确定最佳阈值曲线。研究表明:(1)拟合确定了诱发滑坡灾害的最佳降雨阈值曲线,并将其应用于2021年滑坡灾害预报,预测正确率达到87.72%。(2)通过滑坡隐患点编目数据进行滑坡危险性区划,中高及高危险性区域(4级和5级)的滑坡灾害点占比51.46%,中至高危险性区域(3级至5级)的灾害点占比91.23%,显示出阈值曲线在空间预测上的有效性。最佳降雨阈值曲线的应用显著提高了滑坡预警系统的准确性和可靠性。研究成果有助于优化现行滑坡预警系统,提高灾害管理效率,可为滑坡灾害预防和减灾工作提供科学支持。
Abstract:
The Qinba Mountains area in Sichuan province, China, has been known for high incidences of landslides partly due to complex local terrain and frequent microclimate extremes, but precipitation is certainly one of the main natural factors causing landslides. Although the existing regional landslide warning system provides regular monitoring services, there is still room for improvement in its accuracy.
In this study, 1850 landslide events and simultaneous hourly precipitation data from 2000—2020 were collected and regressively analyzed to identify the key rainfall patterns governing landslide occurrences; an optimal threshold curve of precipitation was determined using combined indicators such as confusion matrix and skill scores.
(1)The optimal precipitation threshold curve for inducing landslides in the Qinba Mountains area was determined by fitting, and validated by the case of landslide forecast in 2021, with a prediction accuracy of 87.72%.
(2)By applying the optimal precipitation threshold curve to landslide hazard mapping through catalog data of field survey, it was found that 51.46% of landslides were in high-risk zones(classes 4 and 5)and 91.23% were in medium to high-risk zones(classes 3 to 5), justifying the effectiveness of the threshold curve for spatial prediction.
This study provides important scientific references for the optimization of the current landslide early warning system, improving the efficiency of disaster management, and supporting landslide disaster prevention and mitigation.

参考文献/References:

[1] FROUDE M J, PETLEY D N. Global fatal landslide occurrence from 2004 to 2016 [J]. Natural Hazards and Earth System Sciences, 2018, 18(8): 2161-2181. DOI: 10.5194/nhess-18-2161-2018
[2] DOWLING C A, SANTI P M. Debris flows and their toll on human life: A global analysis of debris-flow fatalities from 1950 to 2011 [J]. Natural Hazards, 2014, 71(1): 203-227. DOI: 10.1007/s11069-013-0907-4
[3] LI Changjiang, MA Tuhua, ZHU Xingsheng, et al. The power-law relationship between landslide occurrence and rainfall level [J]. Geomorphology, 2011, 130(3-4): 221-219. DOI: 10.1016/j.geomorph.2011.03.018
[4] GARCIA-URQUIA E. Establishing rainfall frequency contour lines as thresholds for rainfall-induced landslides in Tegucigalpa, Honduras, 1980-2005 [J]. Natural Hazards, 2016, 82(3): 2107-2132. DOI: 10.1007/s11069-016-2297-x
[5] ZHOU Wenqi, QIU Haijun, WANG Luyao, et al. Combining rainfall-induced shallow landslides and subsequent debris flows for hazard chain prediction [J]. Catena, 2022, 213: 106199. DOI: 10.1016/j.catena.2022.106199
[6] GUZZETTI F, GARIANO S L, PERUCCACCI S, et al. Geographical landslide early warning systems [J]. Earth Science Reviews, 2020, 200: 102973. DOI: 10.1016/j.earscirev.2019.102973
[7] GARIANO S L, GUZZETTI F. Landslides in a changing climate [J]. Earth Science Reviews, 2016, 162: 227-252. DOI: 10.1016/j.earscirev.2016.08.011
[8] WICKI A, LEHMANN P, HAUCK C, et al. Assessing the potential of soil moisture measurements for regional landslide early warning [J]. Landslides, 2020, 17(8): 1881-1896. DOI: 10.1007/s10346-020-01400-y
[9] SEGONI S, PICIULLO L, GARIANO S L. A review of the recent literature on rainfall thresholds for landslide occurrence [J]. Landslides, 2018, 15(8): 1483-1501. DOI: 10.1007/s10346-018-0966-4
[10] 闵颖, 胡娟, 李超, 等. 云南省滑坡泥石流灾害预报预警模型研究[J]. 灾害学, 2013, 28(4): 216-220. [MIN Ying, HU Juan, LI Chao, et al. Prediction model about landslide and debris flow in Yunnan province [J]. Journal of Catastrophology, 2013, 28(4): 216-220] DOI: 10.3969/j.issn.1000-811X.2013.04.038
[11] CAMPBELL R H. Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California [M]. Washington, D.C.: U S Government Printing Office, 1975: 51.
[12] CANNON S H. Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California [J]. Geology, 1985, 38(12): 267-272. DOI: 10.3133/ofr8310
[13] BRAND E W,PREMCHITT J, PHILLIPSON H B. Relationship between rainfall and landslides in Hong Kong[C]//Proceedings of the 4th International Symposium on Landslides. Toronto: Canadian Geotechnical Society, 1984: 276-284.
[14] SEGONI S, ROSI A, ROSSI G, et al. Analysing the relationship between rainfalls and landslides to define a mosaic of triggering thresholds for regional-scale warning systems [J]. Natural Hazards and Earth System Sciences, 2014, 14(9): 2637-2648. DOI: 10.5194/nhess-14-2637-2014
[15] JAKOB M, OWEN T, SIMPSON T. A regional real-time debris-flow warning system for the District of North Vancouver, Canada [J]. Landslides, 2012, 9(2): 165-178. DOI: 10.1007/s10346-011-0282-8
[16] ORTIGAO J A R, JUSTI M G, D'ORSI R, et al. Rio-Watch 2001: the Rio de Janeiro landslide alarm system[C]//HO K K S, LI K S. Proceedings of the 14th Southeast Asian Geotechnical Conference. Hong Kong: Balkema, 2001: 237-241.
[17] LIAO Zonghu, HONG Yang, WANG Jun, et al. Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets [J]. Landslides, 2010, 7(3): 317-324. DOI: 10.1007/s10346-010-0219-7
[18] 狄靖月, 许凤雯, 李宇梅, 等. 东南地区引发地质灾害降水分型及阈值分析[J]. 灾害学, 2019, 34(1): 62-67+93. [DI Jingyue, XU Fengwen, LI Yumei, et al. Precipitation type and threshold analysis of geological disasters in southeast [J]. Journal of Catastrophology, 2019, 34(1): 62-67+93] DOI: 10.3969/j.issn.1000-811X.2019.01.013
[19] 张添锋, 郭朝旭. 福建山区泥石流临界降雨阈值[J]. 山地学报, 2021, 39(5): 701-709. [ZHANG Tianfeng, GUO Chaoxu. Rainfall threshold of debris flow in Fujian mountainous area, China [J]. Mountain Research, 2021, 39(5): 701-709] DOI: 10. 16089/j.cnki.1008-2786.000631
[20] 周剑, 汤明高, 许强, 等. 重庆市滑坡降雨阈值预警模型[J]. 山地学报, 2022, 40(6): 847-858. [ZHOU Jian, TANG Minggao, XU Qiang, et al. Early warning model of rainfall-induced landslide in Chongqing of China based on rainfall threshold [J]. Mountain Research, 2022, 40(6): 847-858] DOI: 10.16089/j.cnki.1008-2786.000718
[21] 孙鹏, 胡磊, 胡玉乾, 等. 横断山区汶川县滑坡泥石流降雨致灾阈值研究[J]. 北京师范大学学报(自然科学版), 2023, 59(2): 187-195. [SUN Peng, HU Lei, HU Yuqian, et al. On disaster threshold of landslide and debris flow rainfall in Wenchuan county [J]. Journal of Beijing Normal University(Natural Science), 2023, 59(2): 187-195] DOI: 10.12202/j.0476-0301.2021302
[22] 徐继维, 于国强, 张茂省, 等. 舟曲地区泥石流降雨临界阈值[J]. 山地学报, 2017, 35(1): 39-47. [XU Jiwei, YU Guoqiang, ZHANG Maosheng, et al. Critical rainfall thresholds for debris flows in Zhouqu, China [J]. Mountain Research, 2017, 35(1): 39-47] DOI: 10.16089/j.cnki.1008-2786.000194
[23] 胡磊, 胡玉乾, 孙鹏, 等. 藏东南地区降雨型滑坡致灾阈值及滑坡危险性量化分析[J]. 灾害学, 2021, 36(4): 194-199. [HU Lei, HU Yuqian, SUN Peng, et al. A quantitative analysis of disaster threshold and landslide risk of rainfall-type landslide in Southeast Tibet [J]. Journal of Catastrophology, 2021, 36(4): 194-199] DOI: 10.3969/j.issn.1000-811X.2021.04.032
[24] 吴杰, 陈冠, 孟兴民, 等. 白龙江流域滑坡降雨临界值[J]. 山地学报, 2022, 40(6): 875-886. [WU Jie, CHEN Guan, MENG Xingmin, et al. Rainfall threshold of landslides in the Bailong River basin, China [J]. Mountain Research, 2022, 40(6): 875-886] DOI: 10.16089/j.cnki.1008-2786.000720
[25] FLORIS M, BOZZANO F. Evaluation of landslide reactivation: A modified rainfall threshold model based on historical records of rainfall and landslides [J]. Geomorphology, 2008, 94(1-2): 40-57. DOI: 10.1016/j.geomorph.2007.04.009
[26] 铁永波, 周洪福, 倪化勇. 西南山区短时强降雨诱发型低频泥石流成因机制分析——以四川省宝兴县冷木沟泥石流为例[J]. 灾害学, 2013, 28(4): 110-113. [TIE Yongbo, ZHOU Hongfu, NI Huayong. Formation of low frequency debris flow induced by short-time heavy rainfall in mountain area of Southwest China: Take Lengmu debris flow as an example, Baoxing, Sichuan province [J]. Journal of Catastrophology, 2013, 28(4): 110-113] DOI: 10.3969/j.issn.1000-811X.2013.04.020
[27] MARQUES R, ZEZERE J, TRIGO R, et al. Rainfall patterns and critical values associated with landslides in Povoacao County(Sao Miguel Island, Azores): Relationships with the North Atlantic Oscillation [J]. Hydrological Processes, 2008, 22(4): 478-494. DOI: 10.1002/hyp.6879
[28] TONG Bin, LI Yuan, YANG Xudong, et al. The development and application of China national landslide database and information system [J]. Arabian Journal of Geosciences, 2021, 14: 448. DOI: 10.1007/s12517-021-06825-w
[29] 李媛, 杨旭东, 尹春荣, 等. 中国地质灾害时空分布及防灾减灾[M]. 北京: 地质出版社, 2020: 146-166. [LI Yuan, YANG Xudong, YIN Chunrong, et al. Spatial-temporal distribution and disaster prevention and mitigation of geological disasters in China [M]. Beijing: Geological Publishing House, 2020: 146-166]
[30] MUÑOZ SABATER J. ERA5-Land hourly data from 1981 to present [J]. Copernicus Climate Change Service(C3S)Climate Data Store(CDS), 2019, 10: 24381. DOI: 10.24381/cds.e2161bac
[31] XU Jintao, MA Ziqiang, YAN Songkun, et al. Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipitation products? A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation products over mainland China [J]. Journal of Hydrology, 2022, 605: 127353. DOI: 10.1016/j.jhydrol.2021.127353
[32] SHEN Liucheng, WEN Jiahong, ZHANG Yuqing, et al. Performance evaluation of ERA5 extreme precipitation in the Yangtze River Delta, China [J]. Atmosphere, 2022, 13(9): 1416. DOI: 10.3390/atmos13091416
[33] FANG Kun, TANG Huiming, LI Changdong, et al. Centrifuge modelling of landslides and landslide hazard mitigation: A review [J]. Geoscience Frontiers, 2023, 14(1): 101493. DOI: 10.1016/j.gsf.2022.101493
[34] GUMBEL E J. Statistics of extremes [M]. New York: Columbia University Press, 1958: 375-376.
[35] TE CHOW V, MAIDMENT D R, MAYS L W. Applied hydrology [M]. New York: McGraw-Hill, 1988: 380-389.
[36] CAINE N. The rainfall intensity-duration control of shallow landslides and debris flows [J]. Geografiska Annaler: Series A, Physical Geography, 1980, 62(1-2): 23-27. DOI: 10.1080/04353676.1980.11879996
[37] DAHAL R K, HASEGAWA S. Representative rainfall thresholds for landslides in the Nepal Himalaya [J]. Geomorphology, 2008, 100(3-4): 429-443. DOI: 10.1016/j.geomorph.2008.01.014
[38] GUZZETTI F, PERUCCACCI S, ROSSI M, et al. Rainfall thresholds for the initiation of landslides in central and southern Europe [J]. Meteorology and Atmospheric Physics, 2007, 98: 239-267. DOI: 10.1007/s00703-007-0262-7
[39] BRUNETTI M T, PERUCCACCI S, ROSSI M, et al. Rainfall thresholds for the possible occurrence of landslides in Italy [J]. Natural Hazards and Earth System Sciences, 2010, 10(3): 447-458. DOI: 10.5194/nhess-10-447-2010
[40] HANSSEN A W, KUIPERS W J A. On the relationship between the frequency of rain and various mateorological parameters: With reference to the problem of objective forecasting [M]. De Bilt: Koninklijk Nederlands Meteorologisch Instituut, 1965: 2-15.
[41] MCBRIDE J L, EBERT E E. Verification of quantitative precipitation forecasts from operational numerical weather prediction models over Australia [J]. Weather and Forecasting, 2000, 15(1): 103-121. DOI: 10.1175/1520-0434(2000)0152.0.CO; 2
[42] GARIANO S L, BRUNETTI M T, IOVINE G, et al. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy [J]. Geomorphology, 2015, 228: 653-665. DOI: 10.1016/j.geomorph.2014.10.019
[43] ZHOU Chang, AI Dong, HUANG Wei, et al. Emergency survey and stability analysis of a rainfall-induced soil-rock mixture landslide at Chongqing city, China [J]. Frontiers in Earth Science, 2021, 9: 774200. DOI: 10.3389/feart.2021.774200
[44] ALSUBAL S, BIN SAPARI N, HARAHAP I S H, et al. A review on mechanism of rainwater in triggering landslide [C]//IOP Conference Series: Materials Science and Engineering. Bristol: IOP Publishing, 2019, 513(1): 012009.
[45] SU Yan, LAN Simei, XU Li, et al. Simulation of progressive failure process in rainfall-induced landslides [J]. Advanced Materials Research, 2015, 1065-1069: 63-66. DOI: 10.4028/www.scientific.net/AMR.1065-1069.63
[46] MONTGOMERY D R, DIETRICH W E. A physically based model for the topographic control on shallow landsliding [J]. Water Resources Research, 1994, 30(4): 1153-1171. DOI: 10.1029/93WR02979
[47] MONTRASIO L, VALENTINO R. A model for triggering mechanisms of shallow landslides [J]. Natural Hazards and Earth System Sciences, 2008, 8(5): 1149-1159. DOI: 10.5194/nhess-8-1149-2008
[48] YAO Kezhen, YANG Saini, WU Shengnan, et al. Landslide susceptibility assessment considering spatial agglomeration and dispersion characteristics: A case study of Bijie city in Guizhou province, China [J]. ISPRS International Journal of Geo-Information, 2022, 11(5): 269. DOI: 10.3390/ijgi11050269
[49] TOBLER W R. A computer movie simulating urban growth in the Detroit region [J]. Economic Geography, 1970, 46(sup1): 234-240. DOI: 10.2307/143141
[50] STALEY D M, KEAN J W, CANNON S H, et al. Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California [J]. Landslides, 2013, 10: 547-562. DOI: 10.1007/s10346-012-0341-9

相似文献/References:

[1]李长江,麻土华,孙乐玲,等.降雨型滑坡预报中计算前期有效降雨量的一种新方法[J].山地学报,2011,(01):81.
 LI Changjiang,MA Tuhua,SUN Leling,et al.A New Approach to Calibrate Antecedent Precipitation for Rainfalltriggering Landslide Forecast[J].Mountain Research,2011,(2):81.
[2]吴 杰,陈 冠*,孟兴民,等.白龙江流域滑坡降雨临界值[J].山地学报,2022,(6):875.[doi:10.16089/j.cnki.1008-2786.000720]
 WU Jie,CHEN Guan*,MENG Xingmin,et al.Rainfall Threshold of Landslides in the Bailong River Basin, China[J].Mountain Research,2022,(2):875.[doi:10.16089/j.cnki.1008-2786.000720]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-12-22; 改回日期(Accepted date):2024- 03-25
基金项目(Foundation item): 第二次青藏高原综合科学考察研究(2019QZKK0906)[The Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0906)]
作者简介(Biography): 王智昊(1998-),女,湖北襄阳人,硕士研究生,主要研究方向:地质灾害风险评估。[WANG Zhihao(1998-), female, born in Xiangyang, Hubei province, M. Sc. candidate, research on risk assessment of geohazards] E-mail: zhihaowang@mail.bnu.edu.cn
*通讯作者(Corresponding author): 杨赛霓(1975-),女,博士,教授,主要研究方向:风险评估与应急管理。[YANG Saini(1975-), female, Ph.D., professor, specialized in risk assessment and emergency management] E-mail: yangsaini@bnu.edu.cn
更新日期/Last Update: 2024-03-30