[1]侯晓静,段克勤*,石培宏,等.基于ERA5-Land数据的1961—2020年喜马拉雅山地区气温变化特征[J].山地学报,2024,(3):320-333.[doi:10.1111/j.1469-8137.2005.01565.x ]
 HOU Xiaojing,DUAN Keqin*,SHI Peihong,et al.Temperature Change in the Himalayas from 1961 to 2020 Based on ERA5-Land Data[J].Mountain Research,2024,(3):320-333.[doi:10.1111/j.1469-8137.2005.01565.x ]
点击复制

基于ERA5-Land数据的1961—2020年喜马拉雅山地区气温变化特征
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第3期
页码:
320-333
栏目:
山地环境
出版日期:
2024-07-28

文章信息/Info

Title:
Temperature Change in the Himalayas from 1961 to 2020 Based on ERA5-Land Data
文章编号:
1008-2786-(2024)3-320-14
作者:
侯晓静段克勤*石培宏陈 荣豆明玉
(陕西师范大学 地理科学与旅游学院, 西安710119)
Author(s):
HOU Xiaojing DUAN Keqin* SHI Peihong CHEN Rong DOU Mingyu
(School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China )
关键词:
喜马拉雅山 气温变化 ERA5-Land 0 ℃等温线 海拔依赖性变暖
Keywords:
Himalayas temperature changes ERA5-Land 0 ℃ isotherm elevation-dependent warming
分类号:
K903
DOI:
10.1111/j.1469-8137.2005.01565.x
文献标志码:
A
摘要:
喜马拉雅山地区气温对全球气候变化敏感。由于海拔高、数据获取难度大,已有研究对喜马拉雅山区气候变化的认识并不充分。本研究基于高分辨率ERA5-Land数据,分析1961—2020年喜马拉雅山地区气温时空变化特征,评估其在喜马拉雅山地区的适用性。结果表明:(1)1961—2020年喜马拉雅山整体以0.13 ℃/10a的速率升温,但自1990年后升温速率显著增大至0.20 ℃/10a,以秋冬季变暖最为显著。(2)空间上,北坡升温高于南坡,东段升温快于西段。升温导致年平均0 ℃等温线上升100 m,且0 ℃等温线季节差异显著,其中秋季升高可达161 m,而春季升高仅70 m。(3)喜马拉雅山地区气温垂直变化存在海拔依赖性特征,中、东段升温峰值区位于海拔4000~5500 m处,而西段升温峰值区位于海拔3000~4000 m处。1961—2020年喜马拉雅山高海拔地区积雪面积快速减少,导致地表反照率降低进而地表吸收太阳辐射增加,形成气温升高—反照率降低—气温进一步升高的正反馈过程,这是高海拔升温显著的重要原因。全面认识喜马拉雅山高海拔地区气温的时空演变规律有利于应对变暖所导致的环境问题并提出相应策略。
Abstract:
The Himalayas is sensitive to global climate change. Poor traffic accessibility in the Himalayas with unavailability in long-term field meteorological record in the region led to inadequacy in the scientific understanding of local climate change.
Based on high-resolution ERA5-Land data, this study examined its applicability in the Himalayas and analyzed temp-spatial variation of local temperature from 1961 to 2020.
(1)From 1961 to 2020, the overall temperature in the Himalayas increased at a rate of 0.13 ℃/10a, since 1990, the warming rate had increased significantly to 0.20 ℃/10a, with the most significant warming in autumn and winter.
(2)Spatially, the temperature rise on the northern slope of the Himalayas was higher than that on the southern slope, and the temperature rise in the eastern section of the Himalayas was faster than that in the western section. Warming caused the annual average 0 ℃ isotherm to rise by 100 m. The seasonal fluctuation of the 0 ℃ isotherm was distinct, with an increase of up to 161 m in autumn but only 70 m in spring.
(3)The vertical variation of temperature in the Himalayas was elevation-dependent, with the peak warming area in the middle and eastern sections arranged at an altitude of 4000 to 5500 m, while the peak warming area in the western section at an altitude of 3000 to 4000 m.
(4)From 1961 to 2020, the rapid reduction of snow cover area at the high-altitude sites in the Himalayas led to a decrease in surface albedo and an increase in surface absorption of solar radiation, forming a positive feedback process of temperature increasing - albedo decreasing - temperature further increasing, which was an important reason for the significant warming at high-altitudes.
A comprehensive understanding of the temporal and spatial evolution of temperature in the high-altitude Himalayas is conducive to dealing with environmental problems caused by global warming and policy making.

参考文献/References:

[1] KUMAR P, SAHARWARDI M S, BANERJEE A, et al. Snowfall variability dictates glacier mass balance variability in Himalaya-Karakoram [J]. Scientific Reports, 2019, 9: 1-9. DOI: 10.1038/s41598-019-54553-9
[2] YAO Tandong, XUE Yongkang, CHEN Deliang, et al. Recent Third Pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multi-disciplinary approach with observation, modeling and analysis [J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444. DOI: 10.1175/BAMS-D-17-0057.1
[3] KANDEL S, KHADKA N, TIWARI D, et al. Evolution and bathymetry of glacial lake at the lowest elevation in Nepal Himalaya [J]. Journal of Mountain Science, 2023, 20(1): 141-144. DOI: 10.1007/s11629-022-7615-z
[4] 姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209. [YAO Tandong, WU Guangjian, XU Baiqing, et al. Asian Water Tower change and its impacts [J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(11): 1203-1209] DOI: 10.16418/j.issn.1000-3045.2019.11.003
[5] 底阳平, 张扬建, 曾辉, 等. “亚洲水塔”变化对青藏高原生态系统的影响[J]. 中国科学院院刊, 2019, 34(11): 1322-1331. [DI Yangping, ZHANG Yangjian, ZENG Hui, et al. Effects of changed Asian Water Tower on Tibetan Plateau ecosystem:A review [J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(11): 1322-1331] DOI: 10.16418/j.issn.1000-3045.2019.11.015
[6] 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3025-3035+1-2. [CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau [J]. Chinese Science Bulletin, 2015, 60(32): 3025-3035] DOI: 10.1360/N972014-01370
[7] 王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊, 2019, 34(11): 1220-1232. [WANG Ninglian, YAO Tandong, XU Baiqing, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming [J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(11): 1220-1232] DOI: 10.16418/j.issn.1000-3045.2019.11.005
[8] 陈涛, 智海, 边多. 青藏高原观测地表温度与ERA-Interim再分析资料的差异及归因分析[J]. 山地学报, 2019, 37(1): 1-8. [CHEN Tao, ZHI Hai, BIAN Duo. Investigation on the discrepancy between observed surface temperature and ERA-Interim over the Qinghai-Tibet Plateau and its attribution [J]. Mountain Research, 2019, 37(1): 1-8] DOI: 10.16089/j.cnki.1008-2786.000393
[9] INGTY T, ERB A, ZHANG Xiaoyang, et al. Climate change is leading to rapid shifts in seasonality in the Himalaya [J]. International Journal of Biometeorology, 2023, 67: 913-925. DOI: 10.1007/s00484-023-02465-9
[10] CHEN Rong, DUAN Keqin, SHANG Wei, et al. Increase in seasonal precipitation over the Tibetan Plateau in the 21st century projected using CMIP6 models [J]. Atmospheric Research, 2022, 277: 106306. DOI: 10.1016/j.atmosres.2022.106306
[11] SHEKHAR M S, CHAND H, KUMAR S, et al. Climate change studies in the western Himalaya [J]. Annals of Glaciology, 2010, 51(54): 105-112. DOI: 10.3189/172756410791386508
[12] HAN Yizhe, MA Yaoming, WANG Zhongyan, et al. Variation characteristics of temperature and precipitation on the northern slopes of the Himalaya region from 1979 to 2018 [J]. Atmospheric Research, 2021, 253: 105481. DOI: 10.1016/j.atmosres.2021.105481
[13] YADAY R R, PARK W K, SINGH J, et al. Do the western Himalaya defy global warming? [J]. Geophysical Research Letters, 2004, 31(17): L17201. DOI: 10.1029/2004GL020201
[14] DUAN Anmin, WU Guoxiong, ZHANG Qiong, et al. New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions [J]. Chinese Science Bulletin, 2006, 51(11): 1396-1400. DOI: 10.1007/s11434-006-1396-6
[15] LIU Xiaodong, YIN Zhiyong, SHAO Xuemei, et al. Temporal trends and variability of daily maximum and minimum extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961-2003 [J]. Journal of Geophysical Research: Atmospheres, 2006, 111: D19109. DOI: 10.1029/2005JD006915
[16] SHARMA K P, MOORE B, VOROSMARTY C J. Anthropogenic, climatic, and hydrologic trends in the Kosi Basin, Himalaya [J]. Climate Change, 2000, 47(1-2): 141-165. DOI: 10.1023/A:100569680895
[17] GIORGI F, HURRELL J W, MARINUCCI M R, et al. Elevation dependency of the surface climate change signal: A model study [J]. Journal of Climate, 1997, 10: 288-296. DOI: 10.1175/1520-0442(1997)010% 3c0288
[18] DIMRI A P, PALAZZI E, DALOZ A S. Elevation dependent precipitation and temperature changes over Indian Himalayan region [J]. Climate Dynamics, 2022, 59(1-2): 1-21. DOI: 10.1007/s00382-021-06113-z
[19] THAKURI S, DAHAL S, SHRESTHA D, et al. Elevation-dependent warming of maximum air temperature in Nepal during 1976-2015 [J]. Atmospheric Research, 2019, 228: 261-269. DOI: 10.1016/j.atmosres.2019.06.006
[20] JAIN S K, KUMAR V, SAHARIA M. Analysis of rainfall and temperature trends in northeast India [J]. International Journal of Climatology, 2013, 33(4): 968-978. DOI: 10.1002/joc.3483
[21] SALERNO F, GUYENNON N, THAKURI S, et al. Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest(central Himalaya)in the last 2 decades(1994-2013)[J]. The Cryosphere, 2015, 9(3): 1229-1247. DOI: 10.5194/tc-9-1229-2015
[22] SHAFIQ M U, RASOOL R, AHMED P, et al. Temperature and precipitation trends in Kashmir valley, north western Himalayas [J]. Theoretical and Applied Climatology, 2019, 135(1-2): 293-304. DOI: 10.1007/s00704-018-2377-9
[23] SNYDER M A, BELL J L, SLOAN L C, et al. Climate responses to a doubling of atmospheric carbon dioxide for a climatically vulnerable region [J]. Geophysical Research Letters, 2002, 29(11): 1514. DOI: 10.1029/2001gl014431
[24] PEPIN N, BRADLEY R S, DIAZ H F, et al. Elevation-dependent warming in mountain regions of the world [J]. Nature Climate Change, 2015, 5(5): 424-430. DOI: 10.1038/NCLIMATE2563
[25] PALAZZI E, MORTARINI L, TERZAGO S, et al. Elevation-dependent warming in global climate model simulations at high spatial resolution [J]. Climate Dynamics, 2018, 52(5-6): 2685-2702. DOI: 10.1007/s00382-018-4287-z
[26] ZHANG Hongbo, IMMERZEEL W W, ZHANG Fan, et al. Snow cover persistence reverses the altitudinal patterns of warming above and below 5000m on the Tibetan Plateau [J]. Science of the Total Environment, 2022, 803: 149889. DOI: 10.1016/j.scitotenv.2021.149889
[27] YAN Libin, LIU Zhengyu, CHEN Guangshan, et al. Mechanisms of elevation-dependent warming over the Tibetan plateau in quadrupled CO2 experiments [J]. Climate Change, 2016, 135(3-4): 509-519. DOI: 10.1007/s10584-016-1599-z
[28] LAU W K M, KIM M K, KIM K M, et al. Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols [J]. Environmental Research Letters, 2010, 5(2): 025204. DOI: 10.1088/1748-9326/5/2/025204
[29] YOU Qinglong, CHEN Deliang, WU Fangying, et al. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives [J]. Earth Science Reviews, 2020, 210: 103349. DOI: 10.1016/j.earscirev.2020.103349
[30] GUO Donglin, PEPIN N, YANG Kun, et al. Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau [J]. Science Bulletin, 2021, 66(11): 1146-1150. DOI: 10.1016/j.scib.2021.02.013
[31] RANGWALA I, MILLER J R, RUSSELL G L, et al. Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century [J]. Climate Dynamics, 2010, 34(6): 859-872. DOI: 10.1007/s00382-009-0564-1
[32] PEPIN N C, LUNDQUIST J D. Temperature trends at high elevations: Patterns across the globe [J]. Geophysical Research Letters, 2008, 35(14): L14701. DOI: 10.1029/2008GL034026
[33] 冀琴, 董军, 刘睿, 等. 1990—2015年喜马拉雅山冰川变化的遥感监测及动因分析[J]. 地理科学, 2020, 40(3): 486-496. [JI Qin, DONG Jun, LIU Rui, et al. Glacier changes in response to climate change in the Himalayas in 1990-2015 [J]. Scientia Geographica Sinica, 2020, 40(3): 486-496] DOI: 10.13249/j.cnki.sgs.2020.03.017
[34] 张东启, 效存德, 秦大河. 近几十年来喜马拉雅山冰川变化及其对水资源的影响[J]. 冰川冻土, 2009, 31(5): 885-895. [ZHANG Dongqi, XIAO Cunde, QIN Dahe. Himalayan glaciers fluctuation over the latest decades and its impact on water resources [J]. Journal of Glaciology and Geocryology, 2009, 31(5): 885-895] DOI: 1000-0240(2009)05-0885-11
[35] 施雅风, 黄茂桓, 姚檀栋, 等. 中国冰川与环境[M]. 北京: 科学出版社, 2000: 408-410. [SHI Yafeng, HUANG Maohuan, YAO Tandong, et al. Glaciers and their environments in China [M]. Beijing: Science Press, 2000: 408-410]
[36] WANG Xin, LIU Shiyin, GUO Wanqin, et al. Using remote sensing data to quantify changes in glacial lakes in the Chinese Himalaya [J]. Mountain Research and Development, 2012, 32(2): 203-212. DOI: 10.1659/MRD-JOURNAL-D-11-00044.1
[37] CEPPI P, SCHERRER S C, FISCHER A M, et al. Revisiting Swiss temperature trends 1959-2008[J]. International Journal of Climatology, 2010, 32(2): 203-213. DOI: 10.1002/joc.2260
[38] 游庆龙, 康世昌, 李剑东, 等. 青藏高原气候变化若干前沿科学问题[J]. 冰川冻土, 2021, 43(3): 885-901. [YOU Qinglong, KANG Shichang, LI Jiandong, et al. Several research frontiers of climate change over the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2021, 43(3): 885-901] DOI: 10.7522/j.issn.1000-0240. 2021.0029
[39] BARNETT T P, PIERCE D W, HIDALGO H G, et al. Human-induced changes in the hydrology of the western United States [J]. Science, 2008, 319: 1080-1083. DOI: 10.1126/science.1152538
[40] RAMANATHAN V, CARMICHAEL G. Global and regional climate changes due to black carbon [J]. Nature Geoscience, 2008, 1: 221-227. DOI: 10.1038/ngeo156
[41] BONASONI P, LAJ P, MARINONI A, et al. Atmospheric brown clouds in the Himalayas: First two years of continuous observations at the Nepal-Climate Observatory-Pyramid(5079 m)[J]. Atmospheric Chemistry and Physics, 2010, 10: 7515-7531. DOI: 10.5194/acp-10-7515-2010
[42] 武丰民, 李文铠, 李伟. 北极放大效应原因的研究进展[J]. 地球科学进展, 2019, 34(3): 232-242. [WU Fengmin, LI Wenkai, LI Wei. Causes of Arctic amplification: A review [J]. Advances in Earth Science, 2019, 34(3): 232-242] DOI: 10.11867/j.issn.1001-8166.2019.03.0232

备注/Memo

备注/Memo:
收稿日期(Received date): 2023- 07- 06; 改回日期(Accepted date):2024- 06-24
基金项目(Foundation item): 国家自然科学基金(42371137)。[National Natural Science Foundation of China(42371137)]
作者简介(Biography): 侯晓静(1998-),女,山东青岛人,硕士研究生,主要研究方向:气候变化与自然灾害。[HOU Xiaojing(1998-), female, born in Qingdao, Shandong province, M. Sc. candidate, research on climate change and natural disasters] E-mail:houxj@snnu.edu.cn
*通讯作者(Corresponding author): 段克勤(1970-),男,博士,教授,主要研究方向:全球变化。[DUAN Keqin(1970-), male, Ph.D., professor, research on global change] E-mail:kqduan@snnu.edu.cn
更新日期/Last Update: 2024-05-30