[1]徐马强,庞文龙*,张 震,等.三江源地区近地表土壤冻融时空变化[J].山地学报,2024,(3):347-358.[doi:10.11821/dlxb202312009 ]
 XU Maqiang,PANG Wenlong*,ZHANG Zhen,et al.Spatio-Temporal Variation of Freezing-Thawing State of Near Surface Soil in the Three-Rivers Headwater Region of Tibetan Plateau, China[J].Mountain Research,2024,(3):347-358.[doi:10.11821/dlxb202312009 ]
点击复制

三江源地区近地表土壤冻融时空变化
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第3期
页码:
347-358
栏目:
山地环境
出版日期:
2024-07-28

文章信息/Info

Title:
Spatio-Temporal Variation of Freezing-Thawing State of Near Surface Soil in the Three-Rivers Headwater Region of Tibetan Plateau, China
文章编号:
1008-2786-(2024)3-347-12
作者:
徐马强1庞文龙1*张 震1刘春霖1张乐乐2 3
(1. 中国地质调查局西宁自然资源综合调查中心,西宁 810000; 2.青海师范大学 a.地理科学学院; b.青海省自然地理与环境过程重点实验室,西宁 810008; 3. 高原科学与可持续发展研究院,西宁 810008)
Author(s):
XU Maqiang1 PANG Wenlong1* ZHANG Zhen1 LIU Chunlin1 ZHANG Lele23
(1. Xining Center of Natural Resources Comprehensive Survey, China Geological Survey, Xining 810000, China; 2. a. College of Geographical Science; b. Qinghai Provincial Key Laboratory of Physical Geography and Environmental Process, Qinghai Normal University, Xining 810008, China; 3. Academy of Plateau Science and Sustainability, Xining 810008, China)
关键词:
三江源 ERA5-Land 土壤冻融 时空变化
Keywords:
the Three-Rivers Headwater region ERA5-Land soil freezing-thawing spatio-temporal change
分类号:
K903
DOI:
10.11821/dlxb202312009
文献标志码:
A
摘要:
近地表土壤冻融过程影响土壤和大气之间的水分与能量交换,研究其动态变化对揭示多年冻土退化过程具有重要意义。受限于高海拔地区地表观测数据的获取,过去多关注多年冻土区土壤冻融水热运移特征,缺乏对土壤冻融长期变化趋势及其时空变化特征的研究。青海三江源地区是青藏高原多年冻土分布区,是全球气候变化的敏感区和关键带。本文基于野外观测数据评估ERA5-Land地温数据的精度,分析1980—2021年三江源地区近地表土壤冻融时空变化特征。结果表明:(1)ERA5-Land表层土壤温度数据与国家气象局23个站点观测数据的相关系数均值为0.94,均方根误差均值为4.49 ℃; 与6个活动层站点观测数据的相关系数均值为0.96,均方根误差均值为2.57 ℃,能够满足三江源地区土壤冻融时空变化研究要求。(2)三江源地区地表土壤温度年均值、春季、夏季、秋季和冬季空间分布均表现为东部高、西部低; 近地表土壤温度夏季增幅最大,秋季增幅最小,春季、夏季增幅整体高于秋季、冬季。(3)1980—2021年三江源地区冻结天数和冻结持续时间呈现显著减少趋势,减小幅度分别为4.99 d/10a和6.77 d/10a; 冻结起始时间推迟,变化幅度为3.43 d/10a; 冻结结束时间提前,变化幅度为3.35 d/10a。(4)三江源地区西部高海拔地区植被覆盖度远低于东部低海拔区,这可能是造成三江源地区低海拔区域冻结天数减小幅度明显低于高海拔区域的一个重要原因。本研究利用ERA5-Land数据填补了三江源地区土壤冻融时空变化的宏观认识,可为进一步准确认识三江源地区多年冻土空间退化特征提供参考。
Abstract:
Freezing-thawing process of near-surface soil comprises the exchange of moisture and energy between soil and atmosphere, whose dynamic change could be used for scientific interpretation of degradation in permafrost. Possibly restricted by the acquisition of surface observation data in high-altitude plateau areas of China, more scientific efforts were made to reveal the characteristics of soil thermal-hydrological transporting in the midst of freezing-thawing in permafrost, but attentionally neglected the long-term change trend of soil freezing-thawing and associated spatio-temporal change.
The Three-Rivers Headwater Region in the Tibetan Plateau of China was extensively occupied by perennial permafrost, which is a climate-sensitive area and critical zone for global climate change.
In this study, it collected field observations at 23 national meteorological stations in the Three-Rivers Headwater Region and at other 6 stations set in active layer of permafrost for examination of the accuracy of ERA5-Land ground temperature data; then it analyzed the change of soil freezing-thawing from 1980 to 2021 and associated spatio-temporal change.
(1)The average value of correlation coefficient between ERA5-Land surface soil temperature data and the observed data by 23 meteorological stations was 0.94, with a mean value of the mean-root-square error was 4.49 ℃. The average value of correlation coefficient between ERA5-Land surface soil temperature data and the data collected at other 6 stations set in active layer of permafrost was 0.96, with a mean value of the mean-root-square error was 2.57 ℃. The data from ERA5-Land could meet research requirements for evaluating of soil freezing-thawing changes in theThree-Rivers Headwater region.
(2)The spatial distribution of annual mean temperatures of surface soil over a year was high in the east and low in the west in the Three-Rivers Headwater region; near-surface soil temperatures increased the most in the summer and the least in the fall, with overall higher increases in the spring and summer than in the fall and winter.
(3)From 1980 to 2021, the number of freezing days and freezing duration in theThree-Rivers Headwater region had a significant decreasing trend, with a rate of 4.99 d/10a and 6.77 d/10a, respectively. The start of freezing was delayed, with a rate of 3.43 d/10a; the end of freezing was advanced, with a rate of 3.35 d/10a.
(4)The vegetation coverage in the western high-altitude area of theThree-Rivers Headwater region was much lower than that in the eastern low-altitude area, which may be an key reason for the decrease of freezing days in the low-altitude area was lower than that in the high-altitude area.
This study introduced a general knowledge of the spatio-temporal changes of topsoil freezing-thawing in theThree-Rivers Headwater region by application of ERA5-Land data, which provides an insight into the spatial degradation characteristics of permafrost in the Tibetan Plateau.

参考文献/References:

[1] 李辉霞, 刘国华, 傅伯杰. 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011, 31(19): 5495-5504. [LI Huixia, LIU Guohua, FU Bojie. Response of vegetation to climate change and human activity based on NDVI in the Three-River Headwaters region [J]. Acta Ecologica Sinica, 2011, 31(19): 5495-5504]
[2] 邵全琴, 樊江文, 刘纪远, 等. 三江源生态保护和建设一期工程生态成效评估[J]. 地理学报, 2016, 71(1): 3-20. [SHAO Quanqin, FAN Jiangwen, LIU Jiyuan, et al. Assessment on the effects of the first-stage ecological conservation and restoration project in Sanjiangyuan region [J]. Acta Geographica Sinica, 2016, 71(1): 3-20] DOI: 10.11821/dlxb201601001
[3] 赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1233-1246. [ZHAO Lin, HU Guojie, ZOU Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1233-1246] DOI: 10.16418/j.issn.1000-3045.2019.11.006
[4] 易湘生, 尹衍雨, 李国胜, 等. 青海三江源地区近50年来的气温变化[J]. 地理学报, 2011, 66(11): 1451-1465. [YI Xiangsheng, YIN Yanyu, LI Guosheng, et al. Temperature variation in recent 50 years in the Three-River Headwaters region of Qinghai province [J]. Acta Geographica Sinica, 2011, 66(11): 1451-1465] DOI: 10.11821/xb201111002
[5] 李万志, 马海玲, 庞昕玮, 等. 气候变暖背景下青海三江源区季节冻土冻融特征研究[J]. 冰川冻土, 2023, 45(4): 1233-1241. [LI Wanzhi, MA Hailing, PANG Xinwei, et al. Study on the characteristics of freezing and thawing of the seasonally frozen ground in the Three-River Source Region of Qinghai under warming climate [J]. Journal of Glaciology and Geocryology, 2023, 45(4): 1233-1241] DOI: 10.7522/j.issn.1000-0240.2023.0094
[6] 梁奔奔, 李晓东, 张东, 等. 1961—2019年三江源地区季节冻土冻融状态时空变化及影响因素研究[J]. 冰川冻土, 2023, 45(2): 382-394. [LIANG Benben, LI Xiaodong, ZHANG Dong, et al. Study on spatiotemporal changes of the freeze-thaw status of seasonally frozen ground and influencing factors in the Three Rivers Source Region from 1961 to 2019 [J]. Journal of Glaciology and Geocryology, 2023, 45(2): 382-394] DOI: 10.7522/j.issn.1000-0240.2023.0029
[7] 胡国杰, 赵林, 李韧, 等. 青藏高原多年冻土区土壤冻融期间水热运移特征分析[J]. 土壤, 2014, 46(2): 355-360. [HU Guojie, ZHAO Lin, LI Ren, et al. Characteristics of hydro-thermal transfer during freezing and thawing period in permafrost regions [J]. Soils, 2014, 46(2): 355-360] DOI: 10.13758/j.cnki.tr.2014.02.026
[8] 焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状况及土壤水分运移特征[J]. 冰川冻土, 2014, 36(2): 237-247. [JIAO Yongliang, LI Ren, ZHAO Lin, et al. Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active layer [J]. Journal of Glaciology and Geocryology, 2014, 36(2): 237-247] DOI: 10.7522/j.issn.1000-0240.2014.0030
[9] WU Xuerui, DONG Zhounan, JIN Shuanggen, et al. First measurement of soil freeze/thaw cycles in the Tibetan Plateau using CYGNSS GNSS-R data [J]. Remote Sensing, 2020, 12(15): 2361. DOI: 10.3390/rs12152361
[10] QIN Yanhui, WU Tonghua, ZHANG Peng, et al. Spatiotemporal freeze-thaw variations over the Qinghai-Tibet Plateau 1981-2017 from reanalysis [J]. International Journal of Climatology, 2021, 41(2): 1438-1454. DOI: 10.1002/joc.6849
[11] GUO Donglin, WANG Anhui, LI Duo, et al. Simulation of changes in the near-surface soil freeze/thaw cycle using clm4.5 with four atmospheric forcing datasets [J]. Journal of Geophysical Research: Atmospheres, 2018, 123(5): 2509-2523. DOI: 10.1002/2017JD028097
[12] MUNOZ-SABATER J, DUTRA E, AGUSTI-PANAREDA A, et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications [J]. Earth System Science Data, 2021, 13(9): 4349-4383. DOI: 10.5194/essd-13-4349-2021
[13] 岳书平, 闫业超, 张树文, 等. 基于ERA5-LAND的中国东北地区近地表土壤冻融状态时空变化特征[J]. 地理学报, 2021, 76(11): 2765-2779. [YUE Shuping, YAN Yechao, ZHANG Shuwen, et al. Spatiotemporal variations of soil freeze-thaw state in northeast China based on the ERA5-LAND dataset [J]. Acta Geographica Sinica, 2021, 76(11): 2765-2779] DOI: 10.11821/dlxb202111012
[14] 薛华柱, 金磊, 董国涛, 等. 河西走廊近40年地表土壤冻融状态变化特征[J]. 水土保持学报, 2023, 37(6): 65-73+82. [XUE Huazhu, JIN Lei, DONG Guotao, et al. Analysis of spatiotemporal variations of freeze-thaw state of surface soil in Hexi Corridor in recent 40 years [J]. Journal of Soil and Water Conservation, 2023, 37(6): 65-73+82] DOI: 10.13870/j.cnki.stbcxb.2023.06.009
[15] 赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土综合监测数据集(2002—2018)[DB/OL]. http://data.tpdc.ac.cn, 2021. [ZHAO Lin, HU Guojie, ZOU Defu, et al. A synthesis dataset of permafrost for the Qinghai-Xizang(Tibet)Plateau, China(2002-2018)[DB/OL]. http://data.tpdc.ac.cn, 2021] DOI: 10.11888/Geocry.tpdc.271107
[16] ZHAO Lin, ZOU Defu, HU Guojie, et al. A synthesis dataset of permafrost thermal state for the Qinghai-Tibet(Xizang)Plateau, China [J]. Earth System Science Data, 2021, 13(8): 4207-4218. DOI: 10.5194/essd-13-4207-2021
[17] ZHANG Lele, GAO Liming, CHEN Ji, et al. Comprehensive evaluation of mainstream gridded precipitation datasets in the cold season across the Tibetan Plateau [J]. Journal of Hydrology: Regional Studies, 2022, 43: 101186. DOI: 10.1016/j.ejrh.2022.101186
[18] 单帅, 沈润平, 师春香, 等. 中国北部积雪区冬季地表温度和2m气温再分析数据评估[J]. 高原气象, 2020, 39(1): 37-47. [SHAN Shuai, SHEN Runping, SHI Chunxiang, et al. Evaluation of land surface temperature and 2 m air temperature from five reanalyses datasets across north China in winter [J]. Plateau Meteorology, 2020, 39(1): 37-47] DOI: 10.7522/j.issn.1000-0534.2019.00003
[19] 杨淑华, 吴通华, 李韧, 等. 青藏高原近地表土壤冻融状况的时空变化特征[J]. 高原气象, 2018, 37(1): 43-53. [YANG Shuhua, WU Tonghua, LI Ren, et al. Spatial-temporal changes of the near-surface soil freeze-thaw status over the Qinghai-Tibetan Plateau [J]. Plateau Meteorology, 2018, 37(1): 43-53] DOI: 10.7522/j.issn.1000-0534.2017.00043
[20] 高黎明, 张乐乐, 沈永平, 等. ERA-Interim和CMFD气象驱动数据在新疆额尔齐斯河流域的适用性评价[J]. 冰川冻土, 2022, 44(1): 179-187. [GAO Liming, ZHANG Lele, SHEN Yongping, et al. Evaluation of applicability of ERA-Interim and CMFD meteorological forcing data in the Irtysh River basin, Xinjiang [J]. Journal of Glaciology and Geocryology, 2022, 44(1): 179-187] DOI: 10.7522/j.issn.1000-0240.2022.0029
[21] MANN H B. Nonparametric tests against trend [J]. Econometrica: Journal of the Econometric Society, 1945, 13(3): 245-259. DOI: 10.2307/1907187
[22] ZHANG Lele, GAO Liming. Drought and wetness variability and the respective contribution of temperature and precipitation in the Qinghai-Tibetan Plateau [J]. Advances in Meteorology, 2021, 2021: 7378196. DOI: 10.1155/2021/7378196
[23] 张璐, 朱仲元, 席小康, 等. 基于SPEI的锡林河流域干旱演化特征分析[J]. 干旱区研究, 2020, 37(4): 819-829. [ZHANG Lu, ZHU Zhongyuan, XI Xiaokang, et al. Analysis of drought evolution in the Xilin River Basin based on Standardized Precipitation Evapotranspiration Index [J]. Arid Zone Research, 2020, 37(4): 819-829] DOI: 10.13866/j.azr.2020.04.02
[24] 张乐乐, 高黎明, 赵林, 等. 基于ITPCAS数据的青藏高原太阳总辐射时空变化特征[J]. 太阳能学报, 2019, 40(9): 2521-2529. [ZHANG Lele, GAO Liming, ZHAO Lin, et al. Spatial and temporal characteristics of global solar radiation over Qinghai-Tibitan plateau based on ITPCAS dataset [J]. Acta Energiae Solaris Sinica, 2019, 40(9): 2521-2529] DOI: 10.19912/j.0254-0096.2019.09.017
[25] 李红梅, 颜亮东, 温婷婷, 等. 三江源地区气候变化特征及其影响评估[J]. 高原气象, 2022, 41(2): 306-316. [LI Hongmei, YAN Liangdong, WEN Tingting, et al. Characteristics of climate change and its impact assessment in the Three-River Regions [J]. Plateau Meteorology, 2022, 41(2): 306-316] DOI: 10.7522/j.issn.1000-0534.2021.00101
[26] 穆岑, 石莹, 黄月如. 东北地区近60年气温变化规律探讨[J]. 测绘与空间地理信息, 2022, 45(3): 64-67. [MU Cen, SHI Ying, HUANG Yueru. Temperature variation in northeast China in the past 60 years [J]. Geomatics and Spatial Information Technology, 2022, 45(3): 64-67]
[27] KHANDELWAL S, GOYAL R, KAUL N, et al. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India [J]. The Egyptian Journal of Remote Sensing and Space Science, 2018, 21(1): 87-94. DOI: 10.1016/j.ejrs.2017.01.005
[28] AGUILAR-LOME J, ESPINOZA-VILLAR R, ESPINOZA J C, et al. Elevation-dependent warming of land surface temperatures in the Andes assessed using MODIS LST time series(2000–2017)[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 77: 119-128. DOI: 10.1016/j.jag.2018.12.013
[29] HE Juelin, ZHAO Wei, LI Ainong, et al. The impact of the terrain effect on land surface temperature variation based on Landsat-8 observations in mountainous areas [J]. International Journal of Remote Sensing, 2019, 40(5-6): 1808-1827. DOI: 10.1080/01431161.2018.1466082
[30] 施婷婷, 郑兴波, 张丽波, 等. 植被对土壤热扩散特征的影响——以长白山阔叶红松林为例[J]. 生态学报, 2015, 35(12): 3970-3978. [SHI Tingting, ZHENG Xingbo, ZHANG Libo, et al. The influence of vegetation on soil thermal properties: A case study of broadleaved Korean pine forest in Changbai Mountain [J]. Acta Ecologica Sinica, 2015, 35(12): 3970-3978] DOI: 10.5846/stxb201308172098
[31] 闫文辉, 赵晶. 兴安盟2016—2020年地表覆被和地表温度的相关性分析[J]. 环境影响评价, 2023, 45(1): 84-87+124. [YAN Wenhui, ZHAO Jing. The correlation analysis of fractional vegetation coverage and land surface temperature in Hinggan League from 2016 to 2020 [J]. Environmental Impact Assessment, 2023, 45(1): 84-87+124] DOI: 10.14068/j.ceia.2023.01.017
[32] 谢绮丽, 杨鑫, 郝利娜. 2001—2020年三江源区植被覆盖时空变化特征及其影响因素[J]. 水土保持通报, 2022, 42(5): 202-212. [XIE Qili, YANG Xin, HAO Lina. Spatio-temporal variation of vegetation cover and its driving factors in Three-River Headwaters Region during 2001—2020 [J]. Bulletin of Soil and Water Conservation, 2022, 42(5): 202-212] DOI: 10.13961/j.cnki.stbctb.20221017.001
[33] ZOU Defu, ZHAO Lin, SHENG Yu, et al. A new map of permafrost distribution on the Tibetan Plateau [J]. The Cryosphere, 2017, 11(6): 2527-2542. DOI: 10.5194/tc-11-2527-2017
[34] JIN Huijun, HE Ruixia, CHENG Guodong, et al. Changes in frozen ground in the source area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts [J]. Environmental Research Letters, 2009, 4(4): 045206. DOI: 10.1088/1748-9326/4/4/045206

相似文献/References:

[1]方创琳,刘海燕.三江源区生态型产业的发展与示范区建设思路(英文)[J].山地学报,2006,(06):744.
[2]侯晓静,段克勤*,石培宏,等.基于ERA5-Land数据的1961—2020年喜马拉雅山地区气温变化特征[J].山地学报,2024,(3):320.[doi:10.1111/j.1469-8137.2005.01565.x ]
 HOU Xiaojing,DUAN Keqin*,SHI Peihong,et al.Temperature Change in the Himalayas from 1961 to 2020 Based on ERA5-Land Data[J].Mountain Research,2024,(3):320.[doi:10.1111/j.1469-8137.2005.01565.x ]

备注/Memo

备注/Memo:
收稿日期(Received date): 2022- 09-13; 改回日期(Accepted date): 2024- 01-19
基金项目(Foundation item): 中国地质调查局地质调査项目(ZD20220223)。[Project of China Geological Survey(ZD20220223)]
作者简介(Biography): 徐马强(1994-),男,甘肃陇南人,本科,工程师,主要研究方向:环境遥感。[XU Maqiang(1994-), male, born in Longnan, Gansu province, B.S., engineer, research on natural resource survey] E-mail: 651110732@qq.com
*通讯作者(Corresponding author): 庞文龙(1989-),男,硕士研究生,高级工程师,主要研究方向:生态修复、自然资源综合观测。[PANG Wenlong(1989-), M.Sc. candidate, male, senior engineer, research on ecological restoration and natural resource survey] E-mail: pwl01306320@126.com
更新日期/Last Update: 2024-05-30