参考文献/References:
[1] SHINA C L K, PANKAZ K S, RAM B P, et al. Why nature really chose phosphate [J]. Science, 1987, 235(4739): 1173-1178. DOI: 10.1126/science.2434996
[2] HOU Enqing, LUO Yiqi, KUANG Yuanwen, et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems [J]. Nature Communications, 2020, 11(1): 637-646. DOI: 10.1038/s41467-020-14492-w
[3] CUNHA H F V, ANDERSEN K M, LUGLI L F, et al. Direct evidence for phosphorus limitation on Amazon forest productivity [J]. Nature, 2022, 60(7923): 558-562. DOI: 10.1038/s41586-022-05085-2
[4] 罗朝逸, 吴艳宏. 高山生态系统生物土壤结皮对磷循环影响研究进展[J]. 土壤通报, 2024, 55(3): 867-875. [LUO Chaoyi, WU Yanhong. Progress of research on the effect of biological soil crust on phosphorus cycling in alpine ecosystems [J]. Chinese Journal of Soil Science, 2024, 55(3): 867-875] DOI: 10.19336/j.cnki.trtb.2022092603
[5] WU Yanhong, ZHOU Jun, YU Dong, et al. Phosphorus biogeochemical cycle research in mountainous ecosystems [J]. Journal of Mountain Science, 2013, 10: 43-53. DOI: 10.1007/s11629-013-2386-1
[6] 吴艳宏, PRIETZEL J, 周俊, 等. 两种形态分析方法对冰川退缩时间序列土壤中磷的生物有效性评价[J]. 中国科学: 地球科学, 2014, 44(9): 2006-2015. [WU Yanghong, PRIETZEL J, ZHOU Jun, et al. Soil phosphorus bioavailability assessed by XANES and Hedley sequential fraction technique in a glacier foreland chronosequence in Gongga Mountain, southwestern China [J]. Science China: Earth Sciences, 2014, 57(15): 1860-1868] DOI: 10.1007/s11430-013-4741-z
[7] 王吉鹏, 吴艳宏. 磷的生物有效性对山地生态系统的影响[J]. 生态学报, 2016, 36(5): 1204-1214. [WANG Jipeng, WU Yanhong. Phosphorus bioavailability in mountain ecosystems: Characteristics and ecological roles [J]. Acta Ecologica Sinica, 2016, 36(5): 1204-1214] DOI: 10.5846 /stxb201407111421
[8] WALKER T W, SYERS J K. The fate of phosphorus during pedogenesis [J]. Geoderma, 1976, 15: 1-19. DOI: 10.1016/0016-7061(76)90066-5
[9] 何俊波, 吴艳宏. 利用土壤时间序列开展土壤磷的动态变化研究: 进展和展望[J]. 山地学报, 2022, 40(6): 801-810. [HE Junbo, WU Yanhong. Overview of soil phosphorus dynamics using soil chronosequence: Progress and prospects [J]. Mountain Research, 2022, 40(6): 801-810] DOI: 10.16089/j.cnki. 1008-2786.000714
[10] KAFLE A, COPE K R, RATHS R, et al. Harnessing soil microbes to improve plant phosphate efficiency in cropping systems [J]. Agronomy, 2019, 9: 127. DOI: 10.3390/agronomy9030127
[11] BAI Yongchao, CHANG Yingying, HUSSAIN M, et al. Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning [J]. Microorganisms, 2020, 8: 694. DOI: 10.3390/microorganisms8050694
[12] HEDLEY M J, STEWART J W B. Method to measure microbial phosphate in soils [J]. Soil Biology and Biochemistry, 1982, 14: 377-385. DOI: 10.1016/0038-0717(82)90009-8
[13] CHENG Yingying, NARAYANAN M, SHI Xiaojun, et al. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity [J]. Science of the Total Environment, 2023, 901: 166468. DOI: 10.1016/j.scitotenv.2023.166468
[14] WU Wenchao, ZHANG Yangjian, TURNER B L. Organic amendments promote soil phosphorus related functional genes and microbial phosphorus cycling [J]. Geoderma, 2025, 456: 117247. DOI: 10.1016/j.geoderma.2025.117247
[15] VITOUSEK P M, MATSON P A, TURNER D R. Elevational and age gradients in Hawaiian montane rainforest: Foliar and soil nutrients [J]. Oecologia, 1988, 77(4): 565-570. DOI: 10.1007/BF00377275
[16] VINCENT A G, SUNDQVIST M K, WARDLE D A, et al. Bioavailable soil phosphorus decreases with increasing elevation in a subarctic tundra landscape [J]. Plos One, 2014, 9(3): e92942. DOI: 10.1371/journal.pone.0092942
[17] SUNDQVIST M K, WARDLE D A, VINCENT A, et al. Contrasting nitrogen and phosphorus dynamics across an elevational gradient for subarctic tundra heath and meadow vegetation [J]. Plant and Soil, 2014, 383(1-2): 387-399. DOI: 10.1007/s11104-014-2179-5
[18] UNGER M, LEUSCHNER C, HOMEIER J. Variability of indices of macronutrient availability in soils at different spatial scales along an elevation transect in tropical moist forests(NE Ecuador)[J]. Plant and Soil, 2010, 336(1-2): 443-458. DOI: 10.1007/s11104-010-0494-z
[19] LANGE D F, SCHRÖTER S A, DA LUZ F M, et al. Cycling of dissolved organic nutrients and indications for nutrient limitations in contrasting Amazon rainforest ecosystems [J]. Biogeochemistry, 2024, 167: 1567-1588. DOI: 10.1007/s10533-024-01187-3
[20] DALLING J W, HEINEMAN K, LOPEZ O R, et al. Nutrient availability in tropical rain forests: The paradigm of phosphorus limitation [J].Tree Physiology, 2016, 6: 261-273. DOI: 10.1007/978-3-319-27422-5_12
[21] ZHU Jing, LI Min, WHELAN M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review [J]. Science of the Total Environment, 2018, 612: 522-537. DOI: 10.1016/j.scitotenv.2017.08.095
[22] WEN Zhihui, WHITE P J, SHEN Jianbo, et al. Linking root exudation to belowground economic traits for resource acquisition [J]. New Phytologist, 2022, 233(4): 1620-1635. DOI: 10.1111/nph.17854
[23] FUJII K. Plant strategy of root system architecture and exudates for acquiring soil nutrients [J]. Ecological Research, 2024, 39: 623-633. DOI: 10.1111/1440-1703.12477
[24] SCHELLER R M, MLADENOFF D J. A spatially dynamic simulation of the effects of climate change, harvesting, wind, and tree species migration on the forest composition, and biomass in northern Wisconsin, USA [J]. Global Change Biology, 2005, 11: 307-321. DOI: 10.1111/j.1365-2486.2005.00906.x
[25] HUDSON J M G, HENRY G H R. Increased plant biomass in a High Arctic heath community from 1981 to 2008 [J]. Ecology, 2009, 90(10): 2657-2663. DOI: 10.1890/09-0102.1
[26] CHENG Weixin, PARTON W J, GONZALEZ-MELER M A, et al. Synthesis and modeling perspectives of rhizosphere priming [J]. New Phytologist, 2014, 201: 31-44. DOI: 10.1111/nph.12440
[27] FINZI A C, ABRAMOFF R Z, SPILLER K Y S, et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles [J]. Global Change Biology, 2015, 21(5): 2082-2094. DOI: 10.1111/gcb.12816
[28] YIN Liming, DIJKSTRA F A, WANG Peng, et al. Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition [J]. New Phytologist, 2018, 218(3): 1036-1048. DOI: 10.1111/nph.15074
[29] FAVARO A, SINGH B, WARREN C, et al. Differences between priming and rhizosphere priming effects: Concepts and mechanisms [J]. Soil Biology and Biochemistry, 2025, 205: 109769. DOI: 10.1016/j.soilbio.2025.109769
[30] LÖHNIS F. Nitrogen availability of green manures [J]. Soil Science, 1926, 22: 253-290. DOI: 10.1097/00010694-192610000-00001
[31] GUO Dali, XIA Mengxue, WEI Xing, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species [J]. New Phytologist, 2008, 180(3): 673-683. DOI: 10.1111/j.1469-8137.2008.02573.x
[32] HUANG Junsheng, LIU Weixing, YANG Sen, et al. Plant carbon inputs through shoot, root, and mycorrhizal pathways affect soil organic carbon turnover differently [J]. Soil Biology and Biochemistry, 2021, 160: 108322. DOI: 10.1016/j.soilbio.2021.108322
[33] YIN Liming, XIAO Wen, DIJKSTRA F A, et al. Linking absorptive roots and their functional traits with rhizosphere priming of tree species [J]. Soil Biology and Biochemistry, 2020, 150: 107997. DOI: 10.1016/j.soilbio.2020.107997
[34] 孙悦, 徐兴良, KUZYAKOV Y. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报, 2014, 38(1): 62-75. [SUN Yue, XU Xingliang, KUZYAKOV Y. Mechanisms of rhizosphere priming effects and their ecological significance [J]. Chinese Journal of Plant Ecology, 2014, 38(1): 62-75] DOI: 10.3724/SP.J.1258.2014.00007
[35] SHI Longyan, ZHANG Yutian, ZHANG Linjing, et al. Arbor-shrub mixed vegetation restoration strategies enhanced soil organic carbon storage and stability via fine root and fungal characteristics in limestone hills [J]. Plant and Soil, 2025: 1-18. DOI: 10.1007/s11104-025-07372-z
[36] 董玉峰, 朱婉芮, 丁昌俊, 等. 杨树不同根序细根形态对酚酸的响应[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 39-46. [DONG Yufeng, ZHU Wanrui, DING Changjun, et al. Root order-dependent responses of poplar fine roots morphology to phenolic acids [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2020, 44(1): 39-46] DOI: 10.3969/j.iss.1000-2006.201807055
[37] YANG Han, ZHANG Peipei, WANG Qitong, et al. Shifts in root exudate composition coordinate with root resource conservation along an elevation gradient [J]. Journal of Ecology, 2025: 1-15. DOI: 10.1111/1365-2745.70064
[38] LAZDIN, A, PETAJA G, BRDULE A, et al. Fine roots in hemiboreal forest stands and clearcut areas with nutrient-rich organic soils in latvia: Morphological traits, production and carbon input [J]. Forests, 2024, 15: 1500. DOI: 10.3390/f15091500
[39] 陈保冬, 付伟, 伍松林, 等. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. [CHEN Baodong, FU Wei, WU Songlin, et al. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling [J]. Chinese Journal of Plant Ecology, 2024, 48(1): 1-20] DOI: 10.17521/cjpe.2023.0075
[40] BRUNDRETT M C, TEDERSOO L. Evolutionary history of mycorrhizal symbioses and global host plant diversity [J]. New Phytologist, 2018, 220: 1108-1115. DOI: 10.1111/nph.14976
[41] WU Songlin, FU Wei, RILLIG M C, et al. Soil organic matter dynamics mediated by arbuscular mycorrhizal fungi: An updated conceptual framework [J]. New Phytologist, 2024, 242: 1417-1425. DOI: 10.1111/nph.19178
[42] HOBBIE E A. Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies [J]. Ecology, 2006, 87(3): 563-569. DOI: 10.1890/05-0755
[43] HAWKINS H J, CARGILL R I M, VAN NULAND M E, et al. Mycorrhizal mycelium as a global carbon pool [J]. Current Biology, 2023, 33: 560-573. DOI: 10.1016/j.cub.2023.02.027
[44] MEIER I C, TÜCKMANTEL T, HEITKÖTTER J, et al. Root exudation of mature beech forests across a nutrient availability gradient: The role of root morphology and fungal activity [J]. New Phytologist, 2020, 226(2): 583-594. DOI: 10.1111/nph.16389
[45] JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere: Carbon trading at the soil-root interface [J]. Plant and Soil, 2009, 321: 5-33. DOI: 10.1007/s11104-009-9925-0
[46] KLEIN T, SIEGWOLF R T W, KORNER C. Belowground carbon trade among tall trees in a temperate forest [J]. Science, 2016, 352(6283): 342-344. DOI: 10.1126/science.aad6188
[47] 黄梓敬, 徐侠, 张惠光, 等. 根系输入对森林土壤碳库及碳循环的影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 25-32. [HUANG Zijing, XU Xia, ZHANG Huiguang, et al. Advances in effects of root input on forest soil carbon pool and carbon cycle [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2022, 46(1): 25-32] DOI: 10.12302/j.issn.1000-2006.202002048
[48] 申建波, 白洋, 韦中, 等. 根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新[J]. 土壤学报, 2021, 58(4): 805-813. [SHEN Jianbo, BAI Yang, WEI Zhong, et al. Rhizobiont: An interdisciplinary innovation and perspective for harmonizing resources, environment, and food security [J]. Acta Pedologica Sinica, 2021, 58(4): 805-813] DOI: 10.11766/trxb202012310722
[49] DE FEUDIS M, CARDELLI V, MASSACCESI L, et al. Effect of beech(Fagus sylvatica L.)rhizosphere on phosphorous availability in soils at different altitudes(Central Italy)[J]. Geoderma, 2016, 276: 53-63. DOI: 10.1016/j.geoderma.2016.04.028
[50] PHILLIPS R P, MEIER I C, BERNHARDT E S, et al. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2 [J]. Ecology Letters, 2012, 15(9): 1042-1049. DOI: 10.1111/j.1461-0248.2012.01827.x
[51] ZHANG Ziliang, XIAO Juan, YUAN Yuanshuang, et al. Mycelium- and root-derived C inputs differ in their impacts on soil organic C pools and decomposition in forests [J]. Soil Biology and Biochemistry, 2018, 123: 257-265. DOI: 10.1016/j.soilbio.2018.05.015
[52] ZHANG Ziliang, PHILLIPS R P, ZHAO Wenqiang, et al. Mycelia-derived C contributes more to nitrogen cycling than root-derived C in ectomycorrhizal alpine forests [J]. Functional Ecology, 2019, 33: 346-359. DOI: 10.1111/1365-2435.13236
[53] CAIRNEY J W G. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil [J]. Soil Biology and Biochemistry, 2012, 47: 198-208. DOI: 10.1016/j.soilbio.2011.12.029
[54] ROSLING A, MIDGLEY M G, CHEEKE T. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees [J]. New Phytologist, 2016, 209(3): 1184-95. DOI: 10.1111/nph.13720
[55] BASKARAN P, HYVÖNEN R, BERGLUND S L, et al. Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems [J]. New Phytologist, 2017, 213: 1452-1465. DOI: 10.1111/nph.14213
[56] SPOHN M, KUZYAKOV Y. Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation--coupling soil zymography with 14C imaging [J]. Soil Biology and Biochemistry, 2013, 67: 106-113. DOI: 10.1016/j.soilbio.2013.08.015
[57] 王韬略, 杨柳, 陈雅玲, 等. 淹水与非淹水条件下外源水铁矿和葡萄糖对土壤磷有效性的短期影响[J]. 环境科学学报, 2019, 39(8): 2662-2669. [WANG Taolue, YANG Liu, CHEN Yaling, et al. Short-term effects of exogenous ferrihydrite and glucose on the soil available phosphorus under waterlogged and non-waterlogged conditions [J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2662-2669] DOI: 10.13671/j.hjkxxb.2019.0111
[58] 靳云铎, 白彦锋, 沈杨阳, 等. 施肥和凋落物添加对杉木人工林土壤养分和土壤微生物特性的影响[J]. 华中农业大学学报, 2021, 40(5): 72-80. [JIN Yunduo, BAI Yanfeng, SHEN Yangyang, et al. Effects of fertilization and litter addition on soil nutrient and soil microbial properties of Chinese fir plantation [J]. Journal of Huazhong Agricultural University, 2021, 40(5): 72-80] DOI: 10.13300/j.cnki.hnlkxb.2021.05.010
[59] HUANG W J, SPOHN M. Effects of long-term litter manipulation on soil carbon, nitrogen, and phosphorus in a temperate deciduous forest [J]. Soil Biology and Biochemistry, 2015, 83: 12-18. DOI: 10.1016/j.soilbio.2015.01.011
[60] TRAHAN N A, DYNES E L, PUGH E, et al. Changes in soil biogeochemistry following disturbance by girdling and mountain pine beetles in subalpine forests [J]. Oecologia, 2015, 177(4): 981-95. DOI: 10.1007/s00442-015-3227-4
[61] CLAUSING S, PENA R, SONG B, et al. Carbohydrate depletion in roots impedes phosphorus nutrition in young forest trees [J]. New Phytologist, 2021, 229(5): 2611-2624. DOI: 10.1111/nph.17058
[62] MUKAI H, KON Y, SANEMATSU K, et al. Microscopic analyses of weathered granite in ion-adsorption rare earth deposit of Jianxi province, China [J]. Scientific Reports, 2020, 10(1): 20194. DOI: 10.1038/s41598-020-76981-8
[63] WEINTRAUB M N, SCOTT-DENTON L E, SCHMIDT S K, et al. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem [J]. Oecologia, 2007, 154: 327-338. DOI: 10.1007/s00442-007-0804-1
[64] SOONG J L, FUCHSLUEGER L, MARAÑON-JIMENEZ S, et al. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling [J]. Global Change Biology, 2020, 26(4): 1953-1961. DOI: 10.1111/gcb.14962
[65] ROUSK J, FREY S D. Revisiting the hypothesis that fungal-to-bacterial dominance characterizes turnover of soil organic matter and nutrients [J]. Ecological Monographs, 2015, 85(3): 457-472. DOI: 10.1890/14-1796.1
[66] HASSANI M A, DURAN P, HACQUARD S. Microbial interactions within the plant holobiont [J]. Microbiome, 2018, 6(1): 58. DOI: 10.1186/s40168-018-0445-0
[67] FENG Jiguang, HE Keyi, ZHANG Qiufang, et al. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems [J]. Global Change Biology, 2022, 28(10): 3426-3440. DOI: 10.1111/gcb.16107
[68] BRUNN M, HAFNER B D, ZWETSLOOT M J, et al. Carbon allocation to root exudates is maintained in mature temperate tree species under drought [J]. New Phytologist, 2022, 235: 965-977. DOI: 10.1111/nph.18157
[69] WILLIAMS A, DE VRIES F T. Plant root exudation under drought: Implications for ecosystem functioning [J]. New Phytologist, 2020, 225(5): 1899-1905. DOI: 10.1111/nph.16223
[70] YANG Yu, SHI Xu, BALLENT W, et al. Biological phosphorus recovery: Review of current progress and future needs [J]. Water Environment Research, 2017, 89(12): 2122-2135. DOI: 10.2175/106143017X15054988926424
[71] MARTÍNEZ-MARTÍNEZ J G, ROSALES-LOREDO S, HERNÁNDEZ-MORALES A, et al. Bacterial communities associated with the roots of Typha spp. and its relationship in phytoremediation processes [J]. Microorganisms, 2023, 11(6): 1587. DOI: 10.3390/microorganisms11061587
[72] LIU Zhuxiu, GU Haidong, YAO Qin, et al. Soil pH and carbon quality index regulate the biogeochemical cycle couplings of carbon, nitrogen and phosphorus in the profiles of Isohumosols [J]. Science of the Total Environment, 2024, 922: 171269. DOI: 10.1016/j.scitotenv.2024.171269
[73] NEGI R, SHARMA B, KUMAR S, et al. Plant endophytes: Unveiling hidden applications toward agro-environment sustainability [J]. Folia Microbiologica, 2024, 69(1): 181-206. DOI: 10.1007/s12223-023-01092-6
[74] DAI Zhongmin, LIU Guofei, CHEN Huaihai, et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems [J]. The ISME Journal, 2020, 14(3): 757-770. DOI: 10.1038/s41396-019-0567-9
[75] ZHAO Fazhu, WANG Jieying, LI Yi, et al. Microbial functional genes driving the positive priming effect in forest soils along an elevation gradient [J]. Soil Biology and Biochemistry, 2022, 165: 108498. DOI: 10.1016/j.soilbio.2021.108498
[76] REN Chengjie, WANG Jieying, BASTIDA F, et al. Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes [J]. Global Change Biology, 2022, 28(4): 1516-1528. DOI: 10.1111/gcb.16004
[77] LIU Qianyuan, XU Xingliang, WANG Huimin. Dominant extracellular enzymes in priming of SOM decomposition depend on temperature [J]. Geoderma, 2019, 343: 187-195. DOI: 10.1016/j.geoderma.2019.02.006
[78] ZHU He, BING Haijian, WU Yanhong, et al. Low molecular weight organic acids regulate soil phosphorus availability in the soils of subalpine forests, eastern Tibetan Plateau [J]. Catena, 2021, 203: 105328. DOI: 10.1016/j.catena.2021.105328
[79] JONES D L. Organic acids in the rhizosphere-a critical review [J]. Plant and Soil, 1998, 205: 25-44. DOI: 10.1023/A:1004356007312
[80] AOKI M, FUJII K, KITAYAMA K. Environmental control of root exudation of low-molecular weight organic acids in tropical rainforests [J]. Ecosystems, 2012, 15: 1194-1203. DOI: 10.1007/s10021-012-9575-6
[81] HINSINGER P, PLASSARD C, TANG Caixian, et al. Origins of root mediated pH changes in the rhizosphere and their responses to environmental constraints: A review [J]. Plant and Soil, 2003, 248: 43-59. DOI: 10.1023/A:1022371130939
[82] YIN Huajun J, WHEELER E, PHILLIPS R P. Root-induced changes in nutrient cycling in forests depend on exudation rates [J]. Soil Biology and Biochemistry, 2014, 78: 213-221. DOI: 10.1016/j.soilbio.2014.07.022
[83] WANG Jian, QU Lingrui, OSTERHOLZ H, et al. Effects of DOM chemodiversity on microbial diversity in forest soils on a continental scale [J]. Global Change Biology, 2025, 31: e70131. DOI: 10.1111/gcb.70131
[84] SUN Hongyang, WU Yanhong, ZHOU Jun, et al., 2020. Climate influences the alpine soil bacterial communities by regulating the vegetation and the soil properties along an altitudinal gradient in SW China [J]. Catena, 2020, 195: 104727. DOI: 10.1016/j.catena.2020.104727
[85] WANG Jipeng, WU Yanhong, ZHOU Jun, et al. Soil microbes become a major pool of biological phosphorus during the early stage of soil development with little evidence of competition for phosphorus with plants [J]. Plant and Soil, 2020, 446: 259-274. DOI: 10.1007/s11104-019-04329-x
[86] 许淼平, 任成杰, 张伟, 等. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 应用生态学报, 2018, 29(7): 2445-2454. [XU Miaoping, REN Chengjie, ZHANG Wei, et al. Responses mechanism of C: N: P stoichiometry of soil microbial biomass and soil enzymes to climate change [J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2445-2454] DOI: 10.13287/j.1001-9332.201807.041
[87] 曹庆芹, 冯永庆, 刘玉芬, 等. 菌根真菌促进植物磷吸收研究进展[J]. 生命科学, 2011, 23(4): 407-413. [CAO Qingqin, FENG Yongqing, LIU Yufen, et al. Advance of plant phosphorus uptake improved by mycorrhiza fungi [J]. Chinese Bulletin of Life Sciences, 2011, 23(4): 407-413] DOI: 10.13376/j.cbls/2011.04.015
[88] BROECKLING C D, BROZ A K, BERGELSON J, et al. Root exudates regulate soil fungal community composition and diversity [J]. Applied and Environmental Microbiology, 2008, 74(3): 738-744. DOI: 10.1128/AEM.02188-07
[89] HASSELQUIST N J, METCALFE D B, INSELSBACHER E, et al. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest [J]. Ecology, 2016, 97: 1012-1022. DOI: 10.1890/15-1222.1
[90] BECQUER A, TRAP J, IRSHAD U, et al. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association [J]. Frontiers in Plant Science, 2014, 5: 00548. DOI: 10.3389/fpls.2014.00548
[91] MARSCHNER P, UMAR S, BAUMANN K. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue [J]. Soil Biology Biochemistry, 2011, 43: 445-451. DOI: 10.1016/j.soilbio.2010.11.015
[92] DELLA MÓNICA I F, GODOY M S, GODEAS A M, et al. Fungal extracellular phosphatases: Their role in P cycling under different pH and P sources availability [J]. Journal of Applied Microbiology, 2018, 124(1): 155-165. DOI: 10.1111/jam.13620
[93] VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource [J]. New Phytologist, 2003, 157(3): 423-447. DOI: 10.1046/j.1469-8137.2003.00695.x
[94] PLASSARD C, DELL B. Phosphorus nutrition of mycorrhizal trees [J]. Tree Physiology, 2010, 30(9): 1129-1139. DOI: 10.1093/treephys/tpq063
[95] LIANG Xinqiang, JIN Yi, HE Miaomiao, et al. Composition of phosphorus species and phosphatase activities in a paddy soil treated with manure at varying rates [J]. Agriculture, Ecosystems and Environment, 2017, 237: 173-180. DOI: 10.1016/j.agee.2016.12.033
[96] FAN Yuexin, LIN Fang, YANG Liuming, et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem [J]. Biology Fertility of Soils, 2018, 54: 149-161. DOI: 10.1007/s00374-017-1251-8
[97] GEORGE T S, GILES C D, MENEZES-BLACKBURN D, et al. Organic phosphorus in the terrestrial environment: A perspective on the state of the art and future priorities [J]. Plant and Soil, 2018, 427: 191-208. DOI: 10.1007/s11104-017-3391-x
[98] 刘洋荧, 王尚, 厉舒祯, 等. 基于功能基因的微生物碳循环分子生态学研究进展[J]. 微生物学通报, 2017, 44(7): 1676-1689. [LIU Yangying, WANG Shang, LI Shuzhen, et al. Advances in molecular ecology on microbial functional genes of carbon cycle [J]. Microbiology China, 2017, 44(7): 1676-1689] DOI: 10.13344/j.microbiol.china.160941
[99] JIANG Mingkai, CROUS K Y, CARRILLO Y, et al. Microbial competition for phosphorus limits the CO2 response of a mature forest [J]. Nature, 2024, 630: 660-665. DOI: 10.1038/s41586-024-07491-0
[100] SUN Kai, CUI Yutao, SUN Linglulu, et al. Optimizing the manure substitution rate based on phosphorus fertilizer to enhance soil phosphorus turnover and root uptake in pepper(Capsicum)[J]. Frontiers in Plant Science, 2024, 15: 1356861. DOI: 10.3389/fpls.2024.1356861
[101] LIU Jingran, PENG Jun, XIA Houqiang, et al. High soil available phosphorus favors carbon metabolism in cotton leaves in pot trials [J]. Journal of Plant Growth Regulation, 2021, 40: 974-985. DOI: 10.1007/s00344-020-10153-w
[102] ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems [J]. Ecology Letters, 2007, 10: 1135-1142. DOI: 10.1111/j.1461-0248.2007.01113.x
[103] ELLSWORTH D S, CROUS K Y, DE KAUWE M G, et al. Convergence in phosphorus constraints to photosynthesis in forests around the world [J]. Nature Communications, 2022, 13: 5005. DOI: 10.1038/s41467-022-32545-0
[104] TAO Feng, HUANG Yuanyuan, HUNGATE B A, et al. Microbial carbon use efficiency promotes global soil carbon storage [J]. Nature, 2023, 618: 981-985. DOI: 10.1038/s41586-023-06042-3