参考文献/References:
[1] 艾丽皎, 吴志能, 张银龙. 水体消落带国内外研究综述[J]. 生态科学, 2013, 32(2): 259-264. [AI Lijiao, WU Zhineng, ZHANG Yinlong. A summary of water-level-fluctuating zone [J]. Ecological Science, 2013, 32(2): 259-264] DOI: 10.3969/j.issn.1008-8873.2013.02.021
[2] 杜逢彬, 陈继平, 石金胡. 三峡库区消落带环境问题及生态环境评价治理[J]. 城市勘测, 2009(2): 150-152. [DU Fengbin, CHEN Jiping, SHI Jinhu. Environment issues related to the Three Gorges Reservoir area and the evaluation and management of its ecological environment [J]. Urban Geotechnical Investigation & Surveying, 2009(2): 150-152]
[3] 戴方喜, 许文年, 陈芳清. 对三峡水库消落区生态系统与其生态修复的思考[J]. 中国水土保持, 2006, 2(3): 5-8. [DAI Fangxi, XU Wennian, CHEN Fangqing. Thoughts on the ecosystem and its ecological restoration in the water-level-fluctuating zone of the Three Gorges Reservoir [J]. Soil and Water Conservation in China, 2006, 2(3): 5-8] DOI: 10.14123/j.cnki.swcc.2006.12.003
[4] 鲍玉海, 贺秀斌. 三峡水库消落带土壤侵蚀问题初步探讨[J]. 水土保持研究, 2011, 18(6): 190-195. [BAO Yuhai, HE Xiubin. Preliminary study on soil erosion at the water-level-fluctuating zone of the Three Gorges Reservoir [J]. Research of Soil and Water Conservation, 2011, 18(6): 190-195]
[5] 李松阳, 林静远, 潘佳虹, 等. 泥石流频发区不同土地利用类型土壤粒径分布多重分形特征[J]. 应用与环境生物学报, 2021, 27(4): 893-900. [LI Songyang, LIN Jingyuan, PAN Jiahong, et al. Multifractal characteristics of soil particle-size distribution under different land-use types in an area with high frequency debris flow [J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(4): 893-900] DOI: 10.19675/j.cnki.1006-687x.2020.11046
[6] 孙方虎, 苗雨青, 汪勇, 等. 长江下游沿江湖泊湿地土壤粒径分形特征与有机碳分布——以菜子湖湿地为例[J]. 长江流域资源与环境, 2024, 33(8): 1728-1740. [SUN Fanghu, MIAO Yuqing, WANG Yong, et al. Fractal characteristics of soil particle size and organic carbon distribution in the wetlands of the lower Yangtze River: A case study of Caizi Lake wetland [J]. Resources and Environment in the Yangtze Basin, 2024, 33(8): 1728-1740] DOI: 10.11870/cjlyzyyhj202408011
[7] 苏丽鳗, 陈建, 叶宏萌, 等. 南平市不同地势土壤含水率与土壤粒径分布的关系[J]. 北部湾大学学报, 2024, 39(2): 80-84. [SU Liman, CHEN Jian, YE Hongmeng, et al. Relationship between soil moisture content and soil particle size distribution in different terrains of Nanping city [J]. Journal of Beibu Gulf University, 2024, 39(2): 80-84] DOI: 10.19703/j.bbgu.2096-7276.2024.02.0012
[8] 张金隆. 矿物质油对土壤结构性质与水流运动特征的影响研究[D]. 长沙: 长沙理工大学, 2022: 18-20. [ZHANG Jinlong. Influence of mineral oil structure properties and water flow characteristics [D]. Changsha: Changsha University of Science & Technology, 2022: 18-20] DOI: 10.26985/d.cnki.gcsjc.2022.000496
[9] 邹佳慧. 生物炭对土壤团聚体及Cu(Ⅱ)/Cd(Ⅱ)/Zn(Ⅱ)吸附迁移的影响与数值模拟[D]. 青岛: 青岛大学, 2023: 20-24. [ZOU Jiahui. The effect and numerical simulation of biochar on soil aggregates and Cu(II)/Cd(II)/Zn(II)adsorption and migration [D]. Qingdao: Qingdao University, 2023: 20-24] DOI: 10.27262/d.cnki.gqdau.2023.000655
[10] 田卓. 石漠化坡地整地措施对土壤粒径和土壤水分的影响[D]. 桂林: 桂林理工大学, 2023: 18-21. [TIAN Zhuo. Effects of land preparation measures on soil particle size and soil moisture in rocky desertification slope [D]. Guilin: Guilin University of Technology, 2023: 18-21] DOI: 10.27050/d.cnki.gglgc.2023.000723
[11] 田卓, 张帅普, 王醒, 等. 龙脊梯田不同土地利用方式下土壤粒径分形特征[J]. 农业现代化研究, 2023, 44(4): 724-735. [TIAN Zhuo, ZHANG Shuaipu, WANG Xing, et al. Fractal characteristics of soil particle under different land use patterns in Longji terrace [J]. Research of Agricultural Modernization, 2023, 44(4): 724-735] DOI: 10.13872/j.1000-0275.2023.0066
[12] 王德, 傅伯杰, 陈利顶, 等. 不同土地利用类型下土壤粒径分形分析——以黄土丘陵沟壑区为例[J]. 生态学报, 2007, 27(7): 3081-3089. [WANG De, FU Bojie, CHEN Liding, et al. Fractal analysis on soil particle size distributions under different land-use types: A case study in the loess hilly areas of the Loess Plateau, China [J]. Acta Ecologica Sinica, 2007, 27(7): 3081-3089]
[13] 李松阳, 余杭, 罗清虎, 等. 洪涝诱发灾害干扰下受损恢复林地土壤颗粒的组成变化特征及多重分形分析[J]. 北京林业大学学报, 2020, 42(8): 112-121. [LI Songyang, YU Hang, LUO Qinghu, et al. Variation characteristics of soil particle composition and multifractal analysis of natural recovery forestland after damage under the disturbance of flood induced disasters [J]. Journal of Beijing Forestry University, 2020, 42(8): 112-121] DOI: 10.12171/j.1000-1522.20190388
[14] 苏敏, 丁国栋, 高广磊, 等. 呼伦贝尔沙地樟子松人工林土壤颗粒多重分形特征[J]. 干旱区资源与环境, 2018, 32(11): 129-135. [SU Min, DING Guodong, GAO Guanglei, et al. Multi-fractal analysis of soil particle size distribution of Pinus sylvestris var. mongolica plantations in Hulunbeier sandy land [J]. Journal of Arid Land Resources and Environment, 2018, 32(11): 129-135] DOI: 10.13448/j.cnki.jalre.2018.345
[15] 徐加盼, 李继洪, 魏玉杰, 等. 不同母质类型发育土壤颗粒组成分形特征[J]. 土壤学报, 2020, 57(5): 1197-1205. [XU Jiapan, LI Jihong, WEI Yujie, et al. Fractal characteristics of particle composition for soils developed from different parent materials [J]. Acta Pedologica Sinica, 2020, 57(5): 1197-1205] DOI: 10.11766/trxb201904280012
[16] 王燕, 包翔, 王明玖, 等. 科尔沁沙地不同草地利用方式下土壤粒度和有机碳分布特征[J]. 水土保持通报, 2019, 39(6): 84-89+97. [WANG Yan, BAO Xiang, WANG Mingjiu, et al. Characteristics of soil particle size and organic carbon distribution under different grassland utilization modes in Horqin sandy land [J]. Bulletin of Soil and Water Conservation, 2019, 39(6): 84-89+97] DOI: 10.13961/j.cnki.stbctb.2019.06.012
[17] 杜丹丹, 高瑞忠, 贾德彬. 吉兰泰盐湖盆地土壤颗粒分形特征与空间变异分析[J]. 水土保持研究, 2023, 30(6): 93-101. [DU Dandan, GAO Ruizhong, JIA Debin. Analysis of fractal characteristics and spatial variability of soil particles in the Jilantai salt lake basin [J]. Research of Soil and Water Conservation, 2023, 30(6): 93-101] DOI: 10.13869/j.cnki.rswc.2023.06.045
[18] SUN Caili, LIU Guobin, XUE Sha. Natural succession of grassland on the Loess Plateau of China affects multifractal characteristics of soil particle-size distribution and soil nutrients [J]. Ecological Research, 2016, 31(6): 891-902. DOI: 10.1007/s11284-016-1399-y
[19] 龙怀玉, 卢昌艾, 冀宏杰, 等. 《第三次全国土壤普查暂行土壤分类系统》土类检索系统构建[J]. 中国农业科学, 2024, 57(21): 4264-4275. [LONG Huaiyu, LU Changai, JI Hongjie, et al. A retrieval system for great soil groups from China's provisional soil classification system for the 3rd National Soil Census [J]. Scientia Agricultura Sinica, 2024, 57(21): 4264-4275] DOI: 10.3864/j.issn.0578-1752.2024.21.008
[20] 徐文秀. 三峡水库消落带草本根-土复合体抗冲性能研究[D]. 重庆: 重庆师范大学, 2019: 8-9. [XU Wenxiu. Anti-scourability of the herbaceous root-soil system in the riparian zone of the Three Gorges Reservoir, China [D]. Chongqing: Chongqing Normal University, 2019: 8-9]
[21] 徐文秀, 杨玲, 鲍玉海, 等. 大型水库消落带2种典型耐淹草本植物单根抗拉力学特性[J]. 水土保持研究, 2020, 27(5): 259-264+272. [XU Wenxiu, YANG Lin, BAO Yuhai, et al. Tensile mechanical properties single root of two typical flood-tolerant herbs in the reservoir riparian zone [J]. Research of Soil and Water Conservation, 2020, 27(5): 259-264+272] DOI: 10.13869/j.cnki.rswc.2020.05.034
[22] 王燕, 斯庆毕力格, 贾旭, 等. 基于多重分形的半干旱区弃耕农田土壤粒径分布特征[J]. 干旱区研究, 2018, 35(4): 804-812. [WANG Yan, STRING Bilge, JIA Xu, et al. Particle size distribution of soil in abandoned farmland in semiarid area based on multifractal [J]. Arid Zone Research, 2018, 35(4): 804-812] DOI: 10.13866/j.azr.2018.04.07
[23] 孟婷婷. 详述土壤颗粒体积单重分形理论模型计算过程[J]. 科技与创新, 2021(2): 64-65. [MENG Tingting. Elaborate on the calculation process of soil particle volume single fractal theory model [J]. Science and Technology & Innovation, 2021(2): 64-65] DOI: 10.15913/j.cnki.kjycx.2021.02.021
[24] 何海龙, 齐雁冰, 吕家珑, 等. 中国土壤质地分类系统的发展与建议修订方案[J]. 农业资源与环境学报, 2023, 40(3): 501-510. [HE Hailong, QI Yanbing, LYU Jialong, et al. Development and revision of the Chinese soil texture classification system [J]. Journal of Agricultural Resources and Environment, 2023, 40(3): 501-510] DOI: 10.13254/j.jare.2022.0854
[25] 王国梁, 周生路, 赵其国. 土壤颗粒的体积分形维数及其在土地利用中的应用[J]. 土壤学报, 2005, 42(4): 545-550. [WANG Guoliang, ZHOU Shenglu, ZHAO Qiguo. Volume fractal dimension of soil particles and its applications to land use [J]. Acta Pedologica Sinica, 2005, 42(4): 545-550]
[26] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000: 192. [HUANG Changyong. Soil science [M]. Beijing: China Agriculture Press, 2000: 192]
[27] 罗玉红, 黄予姝, 珠娜, 等. 锡林郭勒盟典型草原区草地开垦及退耕造林对土壤粒径分布和养分的影响[J]. 中国农业科学, 2024, 57(24): 4919-4932. [LUO Yuhong, HUANG Yushu, ZHU Na, et al. Effects of cultivation and cropland afforestation on soil particle size distribution and soil nutrients in the typical steppe of Xilingol League [J]. Scientia Agricultura Sinica, 2024, 57(24): 4919-4932] DOI: 10.3864/j.issn.0578-1752.2024.24.008
[28] 龚翔宇. 掺高聚物红土的水稳性特征及其改良机理试验研究[D]. 南昌: 南昌大学, 2024: 70-76. [GONG Xiangyu. Experimental study on water stability characteristics and improvement mechanism of polymer doped laterite [D]. Nanchang: Nanchang University, 2024: 70-76] DOI: 10.27232/d.cnki.gnchu.2024.003121
[29] 张淑娟, 贺秀斌, 鲍玉海, 等. 三峡水库消落带不同水位高程土壤团聚体变化特征[J]. 水土保持研究, 2021, 28(1): 25-30. [ZHANG Shujuan, HE Xiubin, BAO Yuhai, et al. Change characteristics of soil aggregates at different water levels in the water-level fluctuation zone of the Three Gorges Reservoir [J]. Research of Soil and Water Conservation, 2021, 28(1): 25-30] DOI: 10.27525/d.cnki.gkchs.2020.000008
[30] 张淑娟, 贺秀斌, 鲍玉海, 等. 三峡水库消落带土壤团聚体微结构变化特征[J]. 山地学报, 2020, 38(3): 360-370. [ZHANG Shujuan, HE Xiubin, BAO Yuhai, et al. Change features of soil aggregate microstructure in the water-level fluctuation zone of the Three Gorges Reservoir, China [J]. Mountain Research, 2020, 38(3): 360-370] DOI: 10.16089/j.cnki.1008-2786.000516
[31] 敦静怡. 三峡库区消落带土壤氮垂直迁移转化特征研究[D]. 重庆: 重庆三峡学院, 2023: 17-20. [DUN Jingyi. Vertical migration and transformation characteristics of soil nitrogen in water-level-fluctuating zone of Three Gorges Reservoir area [D]. Chongqing: Chongqing Three Gorges University, 2023: 17-20] DOI: 10.27883/d.cnki.gcqsx.2023.000042
[32] 张航宇. 东北典型黑土区小流域土壤质量评价与预测[D]. 武汉: 华中农业大学, 2023: 17-23. [ZHANG Hangyu. Assessment and prediction of soil quality in small watershed areas of the typical black soil region in northeast China [D]. Wuhan: Huazhong Agricultural University, 2023: 17-23] DOI: 10.27158/d.cnki.ghznu.2023.001356
[33] 张文旭, 李建红, 郭灵辉, 等. 太行山油松人工林土壤微团聚体变化特征及其影响因素[J]. 山地学报, 2019, 37(6): 797-807. [ZHANG Wenxu, LI Jianhong, GUO Linghui, et al. Change features of soil micro-aggregates of pinus tabulaeformis plantation at different developmental stages in the southern Taihang mountain and its relationship with soil nutrients [J]. Mountain Research, 2019, 37(6): 797-807] DOI: 10.16089/j.cnki.1008-2786.000470
[34] 王丛. 宁南山区典型植物根系分泌物组成及其对土壤碳库的贡献[D]. 西北农林科技大学, 2021: 30-41. [WANG Cong. Composition and contribution to soil carbon pool of typical plants root exudates in the mountainous area of southern Ningxia [D]. Ningxia: Northwest A&F University, 2021: 30-41] DOI: 10.27409/d.cnki.gxbnu.2021.000436
[35] 李湘. 植物根系与PAANa试剂联合作用下的边坡浅层加固效果研究[D]. 重庆: 重庆交通大学, 2024: 42-46. [LI Xiang. Study on reinforcement effect of shallow slopeunder the combined action of plant roots and PAANa reagent [D]. Chongqing: Chongqing Jiaotong University, 2024: 42-46] DOI: 10.27671/d.cnki.gcjtc.2024.001554
[36] 吴易雯, 严向红, 吴敏, 等. 海拔和植被对三峡库区梨香溪消落带土壤酶活性的影响[J]. 生物资源, 2023, 45(6): 542-550. [WU Yiwen, YAN Xianghong, WU Min, et al. Influence of altitude and vegetation on soil enzyme activity in the water-levelfluctuating zone of Lixiang Creek in Three Gorges Reservoir area [J]. Biotic Resources, 2023, 45(6): 542-550] DOI: 10.14188/j.ajsh.2023.06.004
[37] 罗雅曦, 刘任涛, 张静, 等. 腾格里沙漠草方格固沙林土壤颗粒组成、分形维数及其对土壤性质的影响[J]. 应用生态学报, 2019, 30(2): 525-535. [LUO Yaxi, LIU Rentao, ZHANG Jing, et al. Soil particle composition, fractal dimension and their effects on soil properties following sand-binding revegetation within straw checkerboard in Tengger Desert, China [J]. Chinese Journal of Applied Ecology, 2019, 30(2): 525-535] DOI: 10.13287/j.1001-9332.201902.025
[38] 罗伟, 颜林, 刘恒轩, 等. 若尔盖高原矿区不同覆土条件下土壤理化性质与粒径分布的耦合关系[J]. 环境工程技术学报, 2015, 15(2): 641-650. [LUO Wei, YAN Lin, LIU Hengxuan, et al. Coupling relationship between soil physicochemical properties and particle size distribution under different soil cover conditions in Zoige Plateau mining area [J]. Journal of Environmental Engineering Technology, 2015, 15(2): 641-650] DOI: 10.12153/j.issn.1674-991X.20240629
[39] 李强, 李志伟, 王全, 等. 云南陆良植烟土壤粒径分布及其分形维数空间变异研究[J]. 山地学报, 2017, 35(1): 23-31. [LI Qiang, LI Zhiwei, WANG Quan, et al. Spatial variation of soil particle distribution and its fractal dimensions in a tobacco planting area: A case study of Luliang tobacco growing area [J]. Mountain Research, 2017, 35(1): 23-31] DOI: 10.16089/j.cnki.1008-2786.000192
[40] 陆一鸣, 李哲, 鲁伦慧, 等. 三峡水库消落带土壤有机碳对人类活动的响应[J/OL]. 人民长江, 2025: 1-12. [2025- 04-22]. https://link.cnki.net/urlid/42.1202.tv.20250314.1454.004 [LU Yiming, LI Zhe, LU lunhui, et al. Response of human activities on soil organic carbon in the riparian zone of Three Gorges Reservoir [J/OL]. Yangtze River, 2025: 1-12. [2025- 04-22]. https://link.cnki.net/urlid/42.1202.tv.20250314.1454.004
[41] 郭士维, 钟斌, 许文年, 等. 不同土地利用方式下粉壤土粒径分形特征——以鄂西典型小流域下牢溪为例[J]. 中国水土保持科学, 2022, 20(1): 25-32. [GUO Shiwei, ZHONG Bin, XU Wennian, et al. Fractal characteristics of silt loam soil particle size in different land use types: A case study of Xialao River small watershed in western Hubei [J]. Science of Soil and Water Conservation, 2022, 20(1): 25-32] DOI: 10.16843/j.sswc.2022.01.004
[42] RODRÍGUEZ-LADO L, LADO M. Relation between soil forming factors and scaling properties of particle size distributions derived from multifractal analysis in topsoils from Galicia(NW Spain)[J]. Geoderma, 2017, 287: 147-156. DOI: 10.1016/j.geoderma.2016.08.005