[1]贺 拿,曾 梅,陈宁生,等.砾石土分形特征及其与泥石流启动关系试验[J].山地学报,2016,(01):63-70.[doi:10.16089/j.cnki.1008-2786.000101]
 HE Na,ZENG Mei,CHEN Ningsheng,et al.Experiment on Fractal Feature of Gravelly Soil and Relationship between Fractal Dimension and Debris Flow Initiation[J].Mountain Research,2016,(01):63-70.[doi:10.16089/j.cnki.1008-2786.000101]
点击复制

砾石土分形特征及其与泥石流启动关系试验()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2016年01期
页码:
63-70
栏目:
山地灾害
出版日期:
2016-02-01

文章信息/Info

Title:
Experiment on Fractal Feature of Gravelly Soil and Relationship between Fractal Dimension and Debris Flow Initiation
作者:
贺 拿1曾 梅2陈宁生3李 涛4陈 容2
1.河南理工大学土木工程学院,河南 焦作 454000; 2. 河南工业和信息化职业学院,河南 焦作 454000; 3.中国科学院水利部成都山地灾害与环境研究所/山地灾害与地表过程重点实验室,四川 成都 610041; 4.河南省建筑科学研究院有限公司,河南 郑州 450053
Author(s):
HE Na1 ZENG Mei2 CHEN Ningsheng3 LI Tao4 CHEN Rong2
1. School of Civil Engineering,Henan Polytechnic University,Jiaozuo 454000,Henan,China; 2. Henan College of Industry & Information Technology, Jiaozuo 454000,Henan,China; 3. Key Laboratory of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu 610041,China; 4. Henan Provincial Academy of Building Research, Zhengzhou 450053, Henan,China
关键词:
砾石土分形特征分维值泥石流启动试验
Keywords:
gravelly soil fractal feature fractal dimension debris flow initiation experiments
分类号:
P642.23,TU411
DOI:
10.16089/j.cnki.1008-2786.000101
文献标志码:
A
摘要:
对116条泥石流沟取样,所取土样共182个,通过室内颗分试验得到其颗粒组成特征,以此为基础引入分形理论计算各土样的分维值,并分析分维值与级配特征之间的关系。分析发现:泥石流源区砾石土以一重分形特征为主,分维值介于2.250~2.798之间,分维值大的砾石土颗粒组成较为均匀,分维值减小,砾石土中的细颗粒含量逐渐降低。基于砾石土分维值分布区间,在野外配置土样开展泥石流启动试验,综合分析试验现象、孔隙水压力及含水量变化情况得到以下结论:形成泥石流的砾石土具有临界特征,分维值小于2.4的砾石土不易形成泥石流;分维值介于2.4~2.6时,以土力类泥石流为主,泥石流重度较高且规模较大;分维值介于2.6~2.7时,以水力类泥石流为主,泥石流的重度较低,以稀性泥石流为主,并伴有明显的阵性特征。分维值及降雨条件相同时,土体变形(未启动形成泥石流)或破坏启动形成泥石流的时间与密度呈正相关关系。
Abstract:
About 182 gravelly soil samples were taken from 116 gullies in debris flow prone area. By means of grain size analysis experiment the feature of gravelly soil is obtained, on the basis of grain size analysis results the fractal theory was introduced to calculate the fractal dimension of each sample, at the same time, the relationship between fractal dimension and particle size distribution was discussed. After comprehensive analysis found that gravelly soil in debris flow prone area is mainly concentrated in one dimension, and the value of one dimension fractal ranges from about 2.250 to 2.798, the larger the dimension fractal the more uniformly the gravelly soil becomes, while the fine particle content decreased along with the value of fractal dimension decreased. Based on distribution scope of fractal dimension, debris flow initiation experiment was conducted in the field, and then by comprehensive analysis of experiment phenomenon, real time pore-water pressure and water-content conditions in the slope the following results has been achieved: the gravelly soil which can transfer into debris flow have prominent critical property, the critical value of fractal dimension is 2.4. When fractal dimension below 2.4, the possibility of gravelly soil transfer into debris flow is extremely low, when fractal dimension value ranges from about 2.4 to 2.6, the soil destruction and form into debris flow can be explained by soil mechanics, under this circumstance, debris flow density is higher and the scale is larger. While fractal dimension value ranges from about 2.6 to 2.7, the soil destruction and form into debris flow can be explained by hydraulics, and debris flow density is lower, at the same time the formation of debris flow possess significant intermittent characteristics. Under the condition of identical fractal dimension and rainfall, the time of soil deformation (debris flow do not initiate) or destruction and transferred into debris flow is significantly positive related with soil density.

参考文献/References:

[1] 王裕宜, 田冰, 詹钱登,等. 不同权重的前期和始发日降雨量与泥石流产沙规模的分析——特大型泥石流灾害发生的思考[J]. 中国地质灾害与防治学报, 2009, 20(1): 32-38[Wang Yuyi, Tian Bing, Zhan Qiandeng, et al. Analysis of the relationship between different weight of precedent and daily critical rainfall and sediment transport scale in debris flows[J]. The Chinese Journal of Geological Hazard and Control, 2009, 20(1): 32-38]
[2] 常鸣,唐川. 基于水动力的典型矿山泥石流运动模式研究[J]. 水利学报, 2014,45(11): 1318-1326[Chang Ming, Tang Chuan. Study on typical movement model in mine debris flow based on hydrodynamic force conditions[J]. Journal of Hydraulic Engineering, 2014,45(11): 1318-1326]
[3] 江锦红,邵利萍. 基于降雨观测资料的山洪预警标准[J]. 水利学报,2010,41(4): 458-463[Jiang Jinhong, Shao Liping. Standard of mountain flood warning based on the precipitation observation data[J]. Journal of Hydraulic Engineering, 2010,41(4): 458-463]
[4] 张金山,崔鹏. 泥石流预警及其实施方法[J]. 水利学报,2012, 43(S2): 174-180[Zhang Jinshan,Cui Peng. Research on and implementation of debrisflow forecast and warning[J]. Journal of Hydraulic Engineering, 2012,43(S2): 174-180]
[5] Hu K, Cui P, Wang C, et al. Characteristic rainfall for warning of debris flows[J]. Journal of Mountain Science, 2010, 7: 207-214
[6] 陈晓清. 滑坡转化泥石流起动机理试验研究[D].成都:西南交通大学,2006:18-27[Chen Xiaoqing. Experiment of Initiation Mechanism of Landslide Translation to Debris Flow[D]. Chengdu:Southwest Jiaotong University, 2006:18-27]
[7] 胡明鉴,汪稔. 蒋家沟流域暴雨滑坡泥石流共生关系试验研究[J]. 岩石力学与工程学报,2003,22(5): 824-828[Hu Mingjian, Wang Ren. Testing study on the correlation among landslide, debris flow and rainfall in Jiangjia valley[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5): 824-828]
[8] 周小军,崔鹏,李战鲁. 泥石流源区砾石土渗透沉降综合测试设备研制及应用[J]. 岩石力学与工程学报,2012,31(6): 1281-1289[Zhou Xiaojun, Cui Peng, Li Zhanlu. Development and application of integrated test equipment for permeability and settlement of gravelly soil in triggering area of debris flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2012,31(6): 1281-1289]
[9] 陈中学,汪稔,胡明鉴,等. 黏土颗粒含量对蒋家沟泥石流启动影响分析[J]. 岩土力学,2010,31(7): 2197-2201[Chen Zhongxue, Wang Ren, Hu Mingjian,et al. Study of content of clay particles for debris flow occurrence in Jiangjia Ravine[J]. Rock and Soil Mechanics, 2010, 31(7): 2197-2201]
[10] 陈中学,汪稔,胡明鉴,等. 云南东川蒋家沟泥石流形成内因初探[J]. 岩土力学,2009,30(10): 3053-3056+3070[Chen Zhongxue, Wang Ren, Hu Mingjian, et al. Study of internal factors for debris flow occurrence in Jianjia Ravine, Dongchun of Yunnan[J]. Rock and Soil Mechanics, 2009, 30(10): 3053-3056+3070]
[11] 王志兵,汪稔,胡明鉴,等. 蒋家沟砾石土的特性及其对斜坡失稳的意义[J]. 岩土力学,2010,31(S2): 206-211[Wang Zhibing, Wang Ren, Hu Mingjian,et al. Characteristics of gravelly soil and their implications for slope instability in Jiangjiagou ravine[J]. Rock and Soil Mechanics, 2010, 31(S2): 206-211]
[12] Chen NS, Zhou W, Yang CL, et al. The processes and mechanism of failure and debris flow initiation for gravel soil with different clay content[J]. Geomorphology, 2010, 121(3-4): 222-230
[13] 柏春广,王建. 一种新的粒度指标:沉积物粒度分维值及其环境意义[J]. 沉积学报,2003,21(2): 234-239[Bai Chunguang, Wang jian. A new grainsize index: grainsize fractal dimension of sediment and its environmental significance[J]. Acta Sedimentologica Sinica, 2003,21(2): 234-239]
[14] 倪化勇,吕学军,杨德伟. 川藏公路培龙沟路段堆积物的分形特征及其地质意义[J]. 工程地质学报,2005,13(4): 451-454[Ni Huayong, Lv Xuejun, Yang Dewei. Fractal feature and geological significance of accumulations at Peilong section along Sichuan-Tibet highway[J]. Journal of Engineering Geology, 2005, 13(4): 451-454]
[15] May C L, Gresswell R E. Spatial and temporal patterns of debrisflow deposition in the Oregon Coast Range, USA [J]. Geomorphology, 2004, 57(3-4): 135-149
[16] 吴中如,潘卫平. 分形几何理论在岩土边坡稳定性分析中的应用[J]. 水利学报,1996,4: 79-82[Wu Zhongru, Pan Weiping. Application of fractal geometry theory in stability analysis of rock and soil slope[J]. Journal of Hydraulic Engineering, 1996,4: 79-82]
[17] 张季如,祝杰,黄丽,等. 固结条件下软黏土微观孔隙结构的演化及其分形描述[J]. 水利学报,2008,39(4):394-400[Zhang Jiru, Zhu Jie, Huang Li, et al. Evolution of micro pore structure of soft clay and its fractal features under consolidation[J]. Journal of Hydraulic Engineering, 2008,39(4):394-400]
[18] 陈颙. 分形几何学[M]. 北京: 地震出版社, 1998:22-31[Chen Yu. Fractal geometry[M]. Beijing: Seismological Press,1998:22-31]
[19] 贺拿,陈宁生,朱云华,等. 泥石流源区砾石土分形特征及其与渗透系数关系试验研究[J]. 岩土力学, 2014,35(9): 2543-2548[He Na, Chen Ningsheng, Zhu Yunhua, et al. Experiment study of fractal feature and relationship between fractal dimension and permeability coefficient of gravelly soil in debris flow source area[J]. Rock and Soil Mechanics, 2014,35(9): 2543-2548]

相似文献/References:

[1]黄祺,陈宁生,朱云华,等.泥石流源区砾石土的粒度分形特征[J].山地学报,2012,(05):578.
 HUANG Qi,CHEN Ningsheng,ZHU Yunhua,et al.Particle Size Fractal Characteristics of the Gravel Soil in Original Area of Debris Flow Valleys[J].Mountain Research,2012,(01):578.
[2]陈宁生,张军.泥石流源区弱固结砾石土的渗透规律[J].山地学报,2001,(02):169.
[3]王小丹,刘刚才,刘淑珍,等.西藏高原干旱半干旱区土壤分形特征及其应用[J].山地学报,2003,(S1):58.
[4]尚正永,白永平.丘陵山区城镇体系的分形特征──以江西省赣州市为例[J].山地学报,2007,(02):142.

备注/Memo

备注/Memo:
收稿日期(Received date):2015-06-03;改回日期(Accepted):2015-08-22。 基金项目(Foundation item):灾害风险综合研究计划中国委员会(IRDR-CHINA)资助项目“社区山地灾害风险管理机制研究”(IRDR2012-Y01);河南理工大学博士基金(B2015-58)。[This research were financially supported by Project on Risk Management Mechanisms of Community-Based Mountain Hazards(Grant No. IRDR2012-Y01)supported by Chinese National Committee for Integrated Research on Disaster Risk (IRDR-CHINA), and Doctoral fund of Henan Polytechnic University(Grant No B2015-58).] 作者简介(Biography):贺拿,男,1984年生,博士,主要从事山地灾害及其动力过程方面的研究工作。 [He Na, male, (1984-),doctor, mainly focused on the research of mountain hazards and its dynamic process. ] E-mail:hn61886@163.com
更新日期/Last Update: 1900-01-01