[1]常直杨,孙伟红,王 建*,等.青藏高原及其邻近地区地貌类型划分[J].山地学报,2017,(01):1-8.[doi:10.16089/j.cnki.1008-2786.000189]
 CHANG Zhiyang,SUN Weihong,WANG Jian,et al.Object-oriented Method Based on Classification of Geomorphic Type in the Tibet Plateau and Adjacent Regions[J].Mountain Research,2017,(01):1-8.[doi:10.16089/j.cnki.1008-2786.000189]
点击复制

青藏高原及其邻近地区地貌类型划分()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年01期
页码:
1-8
栏目:
山地环境
出版日期:
2017-01-30

文章信息/Info

Title:
Object-oriented Method Based on Classification of Geomorphic Type in the Tibet Plateau and Adjacent Regions
文章编号:
1008-2786-(2017)1-1-08
作者:
常直杨1孙伟红2王 建3*张志刚3
1.南京旅游职业学院,江苏 南京 211100;
2.江苏省测绘工程院,江苏 南京 210013;
3.南京师范大学 地理科学学院,江苏 南京 210023
Author(s):
CHANG Zhiyang1SUN Weihong2WANG Jian3ZHANG Zhigang3
1.Nanjing Institute of Tourism & Hospitality,Nanjing 211100,China;
2.Jiangsu Province Surveying & Mapping Engineering Institute,Jiangsu 210013,China;
3.School of Geography Science,Nanjing Normal University,Nanjing,Jiangsu 210023,China
关键词:
地貌类型SRTMDEM青藏高原决策树分类
Keywords:
landform classification SRTM DEM Tibet Plateau decision tree classification
分类号:
P931.92
DOI:
10.16089/j.cnki.1008-2786.000189
文献标志码:
A
摘要:
我国至今尚未形成一个公认的地貌分类系统,传统地貌类型的划分主要依据海拔及起伏度,较少考虑地貌的完整性原则,且分类结果琐碎。为了避免此类问题,以我国青藏高原及其邻近地区1000m分辨率的SRTMDEM为数据源,采用面向对象思想,基于eCognition软件,利用多尺度分割、局部方差法以及决策树分类法自动划分了地貌形态。结果表明:(1)在分割尺度范围为10-1400、步长为100时,青藏高原及其邻近地区的最佳分割尺度为400;(2)依据平均高程及标准差的大小,青藏高原及其邻近地区可划分为极高山、大起伏高山、高丘、小起伏高山、大起伏中山、小起伏中山、高海拔平地、低海拔平地八种地貌类型。相比依据海拔及起伏度的划分方法,分类结果更能考虑地貌的完整性原则,且具有高效便捷性,划分结果更平滑,为我国地貌类型的划分提供了参考。
Abstract:
Our country has not yet formed a recognized landform classification system. Traditional landform classification was based primarily on altitude and degree of relief(ruggedness), less consideration of the principle of the integrity of landscape, and it is trivial in detail. To avoid such problems, SRTM DEM data with a resolution of 1000 m collected for the Tibetan Plateau and its adjacent areas were exemplified to introduce a updated landform division, which took advantage of the object-oriented programming and eCognition software, and utilized multi-scale segmentation, local variance method and decision tree classification to automatically realize landform classification. Results showed that:(1)As segmentation scale was in the range of 10-1400 with step size 100, the optimal segmentation scale for Tibetan Plateau and its adjacent areas was 400;(2)According to the average elevations and standard deviations, the Tibetan Plateau and its adjacent areas can be divided into eight kinds of landforms: extremely high altitude mountain; high altitude mountains with large undulating; high hill; high altitude mountain with small undulating; intermediate altitude mountain with large undulating; intermediate altitude mountain with small undulating; high altitude plains and low altitude plains. Compared to the traditional method whose classification depends on altitude and degree of relief, this method proposed here can better reflect the integrity of the principles of landscape, and it is more efficient and convenient to defining landform with a much smoother result. It would be a good reference to Chinese landform classification.

参考文献/References:

[1] 徐宗学,程磊. 分布式水文模型研究与应用进展 [J]. 水利学报,2010,41(9):1009-1017 [XU Zongxue, CHENG Lei. Progress on studies and applications of the distributed hydrological models [J]. Journal of Hydraulic Engineering, 2010, 41(9): 1009-1017]
[2] USACE. HEC-HMS hydrologic modeling system user cs manual California: Hydrologic Engineering Center, 2000
[3] 雍斌,张万昌,赵登忠,等. HEC-HMS水文模型系统在汉江褒河流域的应用研究 [J]. 水土保持通报,2006,26(3):86-90 [YONG Bin, ZHANG Wanchang, ZHAO Zhong, et al. Application of hydrological modeling system HEC-HMS to Baohe catchment of Hanjiang basin [J]. Bulletin of Soil and Water Conservation, 2006, 26(3), 86-90]
[4] 张建军,纳磊,张波. HEC-HMS分布式水文模型在黄土高原小流域的可应用性 [J]. 北京林业大学学报,2009,31(3):52-57 [ZHANG Jianjun, NA Lei, ZHANG Bo. Applicability of the distributed hydrological model of HEC-HMS in a small watershed of the Loess Plateau area [J]. Journal of Beijing Forestry University, 2009, 31(3): 52-57]
[5] 郑鹏,林韵,潘文斌,等. 基于HEC-HMS模型的八一水库流域洪水重现期研究 [J]. 生态学报,2013,33(4):1268-1275 [ZHENG Peng, LIN Yun, PAN Wenbin, et al. Flood return period analysis of the Bayi reservoir watershed based on HEC-HMS model [J], Acta Ecologica Sinica, 2013, 33(4): 1268-1275]
[6] 廖富权. HEC-HMS模型构建及其在恭城河流域洪水预报中的应用 [D]. 广西大学,2014:51-83 [LIAO Fuquan. HEC-HMS building and application in flood forecasting of Gongcheng river basin [D]. Guangxi University, 2014: 51-83]
[7] 陈莹,许有鹏,尹义星. 土地利用/覆被变化下的暴雨径流过程模拟分析——以太湖上游西苕溪流域为例 [J]. 地理科学,2009,29(1):117-123 [CHEN Ying, XU Youpeng, YIN Yixing. Assessment of effects of land use changes on storm runoff generation——a case study of Xitiaoxi basin [J]. Journal of Geographical Sciences, 2009, 29(1): 117-123]
[8] 丁杰,李致家,郭元,等. 利用HEC模型分析下垫面变化对洪水的影响——以伊河东湾流域为例 [J]. 湖泊科学,2011,23(3):463-468 [DING Jie, LI Zhijia, GUO Yuan,et al. Flood responds to the change of underlying surface with the HEC model——a case of Dongwan Basin Yi River[J]. Journal of Lake Sciences, 2011, 23(3): 463-468]
[9] 王纳纳,唐川,唐宏旭. 基于HEC-HMS的水打沟泥石流汇流过程 [J]. 山地学报,2015,33(3):318-325 [WANG Nana, TANG Chuan, TANG Hongxu. Conflux process of debris flow in Shuida Gully using HEC-HMS model [J]. Mountain Research, 2015, 33(3): 318-325]
[10] YANG Shengchi, YANG Tsun-Hua. Uncertainty assessment: reservoir inflow forecasting with ensemble precipitation forecasts and HEC-HMS [J]. Research Article, 2014, 10: 1-11
[11] CHE D, MAYS L W. Development of an optimization/simulation model for real time flood control operation of river reservoirs systems [J]. Water Resources Management, 2015, 29(11): 3987-4005
[12] LIN M, CHEN Xingwei, CHEN Ying, et al. Improving calibration of two key parameters in hydrologic engineering center hydrologic modelling system, and analyzing the influence of initial loss on flood peak flows [J]. Water Science & Technology. 2013, 68(12): 2718-2724
[13] 陈芬,林峰,陈兴伟. 采用分布式HEC-HMS水文模型的晋江流域暴雨次洪模拟 [J]. 华侨大学学报(自然科学版),2012,33(3): 325-329 [CHEN Fen, LIN Feng, CHEN Xingwei. Application of HEC-HMS distributed hydrological model to the rainflood similation in Jinjiang river basin [J]. Journal of Huaqiao University(Natural Science), 2012, 33(3): 325-329]
[14] CAO W Z, BOWDEN B W, DAVIE T, et al. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability [J]. Hydrological Processes, 2006, 20(5): 1057-1073
[15] 鹿世瑾,王岩. 福建气候 [M]. 北京:气象出版社,2012:138-141 [LU Shijin, WANG Yan. The Climate of FuJian [M]. Beijing: China Meteorological Press, 2012: 138-14]
[16] 赵昭炳,陈佳源. 福建省地理 [M]. 福州:福建人民出版社,1993:72-77 [ZHAO Zhaobing, CHEN Jiayuan. Geography of Fujian Province [M]. Fuzhou: Fujian People's Publishing House, 1993: 72-77]
[17] BRACMORT K S, ARABI M, FRANKENBERGER J R, et al. Modeling long-team water quality impact of structural BMPS[J]. American Society of Agricultural and Biological Engineers, 2006, 49(2): 367-374
[18] 福建省水利电力厅. 浙闽台河流水文资料 [M]. 福州, 福建省水文总站, 1972-1981 [Fujian Department of Water Conservancy and Electric Power, Rive Hydrological Resource of ZheMinTai [M]. Fuzhou, Fujian Province of Hydrological Station Press, 1972-1981]
[19] 林木生. 晋江西溪流域暴雨空间变化的洪水响应研究 [D]. 福建师范大学,2012:31-42 [LIN Musheng. Flood response to the spatial variability of storm in the Jinjiang Xixi watershed [D]. Fujian Normal University. 2012: 31-42]
[20] 王林,陈兴伟. 基于3个站点校准与验证的晋江流域径流模拟 [J]. 中国水土保持科学,2007,5(6):21-26 [WANG Lin, CHEN Xingwei. Runoff simulation with calibration and validation of three stations in Jinjiang River basin [J]. Science of Soil and Water Conservation, 2007, 5(6): 21-26]
[21] 周淑梅,雷廷武. 黄土丘陵沟壑区典型小流域SCS-CN方法初损率取值研究 [J]. 中国农业科学,2011,44(20):4240-4247 [ZHOU Shumei, LEI Tingwu. Calibration of SCS-CN initial abstraction ratio of a typical small watershed in the Loess Hilly-Gully region[J]. Scientia Agricultura Sinica, 2011, 44(20): 4240-4247]
[22] 刘家福,蒋卫国,占文凤,等. SCS模型及其研究进展 [J]. 水土保持研究,2010,17(2):120-124 [LIU Jiafu, JIANG Weiguo, ZHAN Wenfeng, et al. Processes of SCS model for hydrological simulation: a review [J]. Research of Soil and Water Conservation, 2010, 17(2): 120-124]
[23] 王红亚,吕明辉. 水文学概论 [M]. 北京大学出版社,2007,86-88 [WANG Hongya, LV Minghui. The Introduction of Hydrology [M]. Beijing: Peking University Press, 2007: 86-88]
[24] 林木生,陈兴伟,陈莹. 晋江西溪流域洪水与暴雨时空分布特征的相关分析 [J]. 资源科学,2011,33(12):2226-2231 [LIN Musheng, CHEN Xingwei, CHEN Ying. Regression analysis of flood response to the spatial and temporal variability of storm in the Jinjiangxixi watershed [J]. Resources Science, 2011, 33(12): 2226-2231]
[25] NASH J E, SUTCLIFFE J V. River flow forecasting through conceptual models [J]. Journal of Hydrology, 1970, 10(3): 282-290

相似文献/References:

[1]胥勤勉,杨达源,葛兆帅,等.金沙江金坪子堆积体成因的初步研究[J].山地学报,2006,(04):403.

备注/Memo

备注/Memo:
基金项目(Foundation item):国家自然科学基金资助项目(41503054); 江苏省高校自然科学研究面上项目资助(16KJB170014)[National Nature Science Foundation of China(41503054); University Science Research Project of Jiangsu Province(16KJB170014)]
作者简介(Biography):常直杨(1987-),男,河南济源人,博士,讲师,主要研究方向:GIS及DEM在地貌学中应用研究 [Chang Zhiyang(1987-),male, born in Jiyuan, Henan Province, Ph.D, Research on geomorphology with GIS] E-mail:changzhiyang1@126.com
*通信作者(Corresponding author): 王建(1962- ),男,博士,教授,主要从事地貌演化发展研究[Wang Jian(1962- ), male, Ph.D, professor, Research on evolution of geomorphology]
更新日期/Last Update: 2017-01-30