[1]林志东,陈兴伟,等.基于灰色关联与BP神经网络的台风非台风暴雨洪水分类模拟[J].山地学报,2017,(06):882-889.[doi:10.16089/j.cnki.1008-2786.000290]
 LIN Zhidong,CHEN Xingwei,ZHANG Cangrong.Simulation of Storm-Floods during Typhoon and Non-Typhoon SeasonsBased on Grey Correlation Analysis and BP Neural Network[J].Mountain Research,2017,(06):882-889.[doi:10.16089/j.cnki.1008-2786.000290]
点击复制

基于灰色关联与BP神经网络的台风非台风暴雨洪水分类模拟()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年06期
页码:
882-889
栏目:
山地灾害
出版日期:
2017-11-30

文章信息/Info

Title:
Simulation of Storm-Floods during Typhoon and Non-Typhoon Seasons Based on Grey Correlation Analysis and BP Neural Network
文章编号:
1008-2786-(2017)6-882-08
作者:
林志东1陈兴伟1 2 3张仓荣4
1.福建师范大学 地理科学学院,福建 福州 350007; 2.福建省陆地灾害监测评估工程技术研究中心,福建 福州 350007; 3.湿润亚热带山地生态国家重点实验室培育基地,福建 福州 350007; 4.台湾大学 生物环境系统工程学系,台湾10617
Author(s):
LIN Zhidong1 CHEN Xingwei123 ZHANG Cangrong4
1.College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; 2.Fujian Provincial Engineering Research Center for Monitoring and Assessing Terrestrial Disasters, Fuzhou 350007, China; 3.State Key Laboratory Breeding Base of Humid Subtropical Mountain Ecology, Fuzhou 350007, China; 4.Bioenvironmental Systems Engineering, National Taiwan University, Taiwan 10617, China
关键词:
台风 暴雨洪水 灰色关联法 BP神经网络 西溪流域
Keywords:
typhoon storm-flood grey correlation analysis BP neural network Xixi watershed
分类号:
P333.2
DOI:
10.16089/j.cnki.1008-2786.000290
文献标志码:
A
摘要:
为进一步研究BP神经网络模型在我国东南沿海地区不同类型暴雨洪水模拟的适用性,基于1956—2011年东南沿海西溪流域暴雨洪水实测资料,将洪水划分为台风和非台风暴雨洪水两类,选取并统计影响洪峰流量的7个要素,采用灰色关联法,分别分析洪水、台风暴雨洪水、非台风暴雨洪水的洪峰流量与各个要素之间的相关性,应用BP神经网络模型对三种系列洪水进行分类模拟。结果表明:(1)各个要素分别与台风和非台风暴雨洪水的洪峰流量的关联度大小、排序明显不同,不同类型洪水的洪峰流量与影响要素的之间相关程度存在较大的差异;(2)构建的多种BP神经网络模型结果都较为满意,可用于西溪流域洪峰流量的模拟预测,且进行台风与非台风暴雨洪水分类后的模型性能更优;(3)分别选取4个主要影响要素建立的台风与非台风暴雨洪水BP神经网络模型,模拟和预测的精度同样较高,能够有效地预测洪峰流量。
Abstract:
Convective rainstorms and typhoon storms occur frequently in the southeastern coastal area of China.In order to investigate the applicability of BP neural network model for simulating storm-floods in this region, Xixi watershed was selected as a study area.Based on observed data of annual rainstorm flood events occurring from 1956 to 2011, seven indices describing the characteristics of storm-floods were calculated(rainstorm volume, rain intensity, rain duration, rainfall time coefficient of variation, center position of rainstorm peak, rainfall space coefficient of variation, and starting discharge of flood).First, all storm-floods were divided into two types: the typhoon storm-floods and non-typhoon storm-floods.Then, the correlation between peak discharge and each of the seven indices was estimated respectively with a grey correlation method, regarding three flood groups(all events, typhoon, non-typhoon)separately.Finally, a variety of BP neural network models were constructed and the performances of models were compared.The results show that the grey correlation degrees of peak discharge and the indices were different among three storm-floods groups, having a higher correlation for the classified floods.All the BP neural network models proposed worked reasonably well for all flood events, but performed better for typhoon storm-floods and non-typhoon storm-floods respectively.The differing correlations and improved model performance suggest that it is necessary to divide the floods into the typhoon and non-typhoon types.Furthermore, by only selecting four indices based on the grey correlation analysis, the constructed BP neural network models are also applicable for the simulation of peak discharges in the study area.

参考文献/References:

[1] 马宗晋.中国重大自然灾害及减灾对策(总论)[M].北京:科学出版社,1994:11-21 [MA Zongjin.The Momentous Natural Disaster and Reduction Action(General Remarks)[M].Beijing: Science Press, 1994: 11-21]
[2] DALIAKOPOULOS IN, TSANIS IK.Comparison of an artificial neural network and a conceptual rainfall-runoff model in the simulation of ephemeral streamflow[J], Hydrological Sciences Journal, 2016, 65(15), 2763-2774
[3] 曹枝俏,王国利,梁国华,等.基于随机模拟信息的神经网络洪水预报模型[J].水力发电学报,2010,29(4):63-69 [CAO Zhiqiao, WANG Guoli, LIANG Guohua, el at.ANN rainfall-runoff modeling using synthetic informations from conceptual model[J].Journal of Hydroelectric Engineering, 2010, 29(4): 63-69]
[4] 李娇,姜明媛,孙文超,等.基于BP神经网络的泉州市山美水库降雨径流模拟研究[J].北京师范大学学报(自然科学版).2013,49(2):170-174 [LI Jiao, JIANG Mingyuan, SUN Wenchao, et al.Rainfall-runoff simulation of Shanmei reservoir in QuanZhou city on BP neural networks[J].Journal of Beijing Normal University(Natural Science), 2013, 49(2): 170-174]
[5] 覃光华,丁晶,李眉眉,等.敏感型人工神经网络及其在水文预报中的应用[J].水科学进展,2003,14(2):163-166 [QIN Guanghua, DING Jing, LI Meimei, et al.Application of an ANNs with sensitive ability to hydrologic forecast[J].Advances in Water Science, 2003, 14(2): 163-166]
[6] 胡健伟,周玉良,金菊良.BP神经网络洪水预报模型在洪水预报系统中的应用[J].水文,2015,35(1):20-25 [HU Jianwei, ZHOU Yuliang, JIN Juliang.Flood forecasting model on BP neural networks and its application in flood forecasting systems[J].Journal of China Hydrology, 2015, 35(1): 20-25]
[7] 何昳颖,陈晓宏,张云,等.BP人工神经网络在小流域径流模拟中的应用[J].水文,2015,35(5):35-40 [HE Yiying, CHEN Xiaohong, ZHANG Yun, et al.Application of BP neural network model in runoff simulating for small watershed[J].Journal of China Hydrology, 2015, 35(5): 35-40]
[8] TAYEBIYAN A, MOHAMMAD TA, GHAZLI A H, et al.Artificial neural network for modelling rainfall-runoff[J].Pertanika Journal of Science and Technology, 2016, 24(2): 319-330
[9] 李致家,周轶,李志龙,等.小波变换与BP神经网络耦合的洪水预报方法[J].水力发电学报,2009,28(2):20-24 [LI Zhijia, ZHOU Yi, LI Zhilong, el at.Flood forecasting method of coupling wavelet transform with BP neural network[J].Journal of Hydroelectric Engineering, 2009, 28(2): 20-24]
[10] KUMAR P S, PRAVEEN T V,PRASAD A D.Artificial neural network model for rainfall-runoff—A case study[J].International Journal of Hybrid Information Technology.2016, 9(3): 263-272
[11] 冯利华.基于神经网络的洪水预报研究[J].自然灾害学报,2000,9(2):45-48 [FENG Lihua.Flood forecast based on neural network[J].Journal of Natural Disasters, 2000, 9(2): 45-48]
[12] 朱星明,卢长娜,王如云,等.基于人工神经网络的洪水水位预报模型[J].水利学报,2005,36(7):806-811 [ZHU Xingming, LU Changna, WANG Ruyun, et al.Artificial neural network model for flood water level forecasting[J].Journal of Hydraulic Engineering, 2005, 36(7): 806-811]
[13] 袁晶,张为,张小峰.宜昌站洪峰流量过程神经网络预测模型研究[J].科学技术与工程,2007,7(23):6096-6099 [YUAN Jing, ZHANG Wei, ZHANG Xiaofeng.Flood peak discharge forecasting model of Yichang using artificial neutral network[J].Science Technology and Engineering, 2007, 7(23): 6069-6099]
[14] 张勃,王海青,张华.基于人工神经网络的莺落峡月径流模拟预测[J].自然资源学报,2009,24(12):2169-2177[ZHANG Bo, WANG Haiqing, ZHANG Hua.The simulation and predication of monthly runoff in Yingluoxia based on artificial neural network[J].Journal of Natural Resources, 2009, 24(12): 2169-2177]
[15] 林志东,陈兴伟,林木生,等.东南沿海西溪流域台风非台风暴雨洪水的时空变化特征[J].山地学报,2017, 35(4):129-141 [LIN Zhidong, CHEN Xingwei, LIN Musheng, el at.Spatial and temporal variations of storm-floods during typhoon and non-typhoon seasons in the Xixi watershed of southeast coastal region[J].Mountain Research, 2017, 35(4): 129-141]
[16] 鹿世瑾,王岩.福建气候[M].北京:气象出版社,2012:138-141 [LU Shijin, WANG Yan.The climate of FuJian[M].Beijing: China Meteorological Press, 2012: 138-141]
[17] 赵昭炳,陈佳源.福建省地理[M].福州:福建人民出版社,1993:72-77 [ZHAO Zhaobing, CHEN Jiayuan.Geography of Fujian Province[M].Fuzhou: Fujian People's Publishing House, 1993: 72-77]
[18] 魏林宏,郝振纯,李丽.降雨空间尺度对径流模拟的影响研究[J].水资源与水工程学报,2006,17(6):19-23 [WEI Linhong, HAO Zhenchun, LI Li.Study on effects of spatial scale of rainfall to runoff simulation[J].Journal of Water Resource & Water Engineering, 2006, 17(6): 19-23]
[19] NEIL McIntyre, AISHA AI-Qurashi, HOWARD Wherter.Regression analysis of rainfall-runoff data from an arid catchment in Oman[J].Hydrological Sciences Journal,, 2007, 52(6): 1103-1118
[20] LIN M, CHEN Xingwei, CHEN Ying, et al.Improving calibration of two key parameters in hydrologic engineering center hydrologic modeling system, and analyzing the influence of initial loss on flood peak flows[J].Water Science & Technology.2013, 68(12): 2718-2724
[21] 林木生,陈兴伟,陈莹.晋江西溪流域洪水与暴雨时空分布特征的相关分析[J].资源科学,2011,33(12):2226-2231 [LIN Musheng, CHEN Xingwei, CHEN Ying.Regression analysis of flood response to the spatial and temporal variability of storm in the Jinjiangxixi watershed[J].Resources Science, 2011, 33(12): 2226-2231]
[22] 姚俊英,朱红蕊,南极月,等.基于灰色理论的黑龙江省暴雨洪涝特征分析及灾变预测[J].灾害学,2012,27(1):59-63 [YAO Junying, ZHU Hongrui, NAN Jiyue, et al.Analysis of flood and disaster forecast in Heilongjiang Province based on grey theory[J].Journal of Catastrophology, 2012, 27(1): 59-63]
[23] HECHT-NIELSEN R Theory of the backpropagation neural network[J].Neural Networks.1988, 1(1): 65-93

相似文献/References:

[1]林志东,陈兴伟,林木生,等.东南沿海西溪流域暴雨洪水的时空变化特征[J].山地学报,2017,(04):488.[doi:10.16089/j.cnki.1008-2786.000246]
 LIN Zhidong,CHEN Xingwei*,LIN Musheng,et al.Spatial and temporal Variations of Storm-floods in Xixi Watershed of Southeast Coastal Region[J].Mountain Research,2017,(06):488.[doi:10.16089/j.cnki.1008-2786.000246]

备注/Memo

备注/Memo:
收稿日期(Received date):2016-09-21; 改回日期(Accepted date):2017-12-12
基金项目(Foundation item):福建省高校产学合作科技重大项目(2015Y4002)[Science and Technology Plan Key Projects of Fujian Province(2015Y4002)]
作者简介(Biography):林志东(1990-),男,福建漳州人,硕士研究生,研究方向:水文与水资源[Lin Zhidong(1990-), male, born in Zhangzhou, Fujian Province, M.Sc.candidate, research on hydrology and water resource] E-mail: linzhidong56@qq.com
*通信作者(Corresponding author):陈兴伟(1963-),男,博士,教授,研究方向:水文水资源与水环境[Chen Xingwei(1963-), male, PhD, professor, research on hydrology, water resource and water environment] E-mail: cxwchen215@163.com
更新日期/Last Update: 2017-11-30