[1]胡铁泷,段 利,蒋良群,等.一种基于光谱归一化的丘陵地区植被覆盖度反演方法[J].山地学报,2019,(05):778-786.[doi:10.16089/j.cnki.1008-2786.000468]
 HU Tieshuang,DUAN Li,JIANG Liangqun,et al.An Inversion Method of Retrieval of Vegetation Coverage in a Hilly Area Based on Spectral Normalization[J].Mountain Research,2019,(05):778-786.[doi:10.16089/j.cnki.1008-2786.000468]
点击复制

一种基于光谱归一化的丘陵地区植被覆盖度反演方法()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年05期
页码:
778-786
栏目:
山地技术
出版日期:
2019-09-30

文章信息/Info

Title:
An Inversion Method of Retrieval of Vegetation Coverage in a Hilly Area Based on Spectral Normalization
文章编号:
1008-2786-(2019)5-778-09
作者:
胡铁泷段 利蒋良群王 杰*
西华师范大学 国土资源学院,四川 南充 637009
Author(s):
HU Tieshuang DUAN Li JIANG Liangqun WANG Jie*
College of Land and Resources, China West Normal University, Nanchong 637009, Sichuan China
关键词:
植被覆盖度 Sentinel 2A遥感影像 端元变化 光谱归一化 光谱混合分析
Keywords:
vegetation coverage fraction Sentinel 2A image endmember variability spectrum normalization spectral mixture analysis
分类号:
TP791~A
DOI:
10.16089/j.cnki.1008-2786.000468
摘要:
由于影像空间分辨率的限制,利用遥感影像反演植被覆盖度时,像元内通常存在植被与其他地物混合的现象。此外,受到物理属性、地形、阴影等因素的影响,植被内部存在较大的光谱差异。混合像元的存在,以及植被内部光谱变化较大都将导致植被覆盖度反演精度降低。本研究基于Sentinel 2A遥感影像,提出了一种基于光谱归一化的光谱混合分析方法,以期解决植被内的光谱差异以及与其他地物的混合问题。首先,对端元矩阵与遥感影像进行归一化预处理,以减弱植被内的光谱变化; 然后,采用全约束最小二乘法(FCLSU)、部分约束最小二乘法(CLSU)、扩展线性混合模型(ELMM)三种混合像元分解算法来定量分析植被与其他地物的混合状态。在验证解混算法精度时,采用无人机高分影像分类结果作为植被覆盖度参考影像,并对归一化前后的精度进行对比。光谱归一化前,ELMM和CLSU的R和RMSE都接近0.903和0.353,FCLSU的R和RMSE为0.869和0.434。光谱归一化后,三种算法的R和RMSE都接近0.91和0.2。试验结果表明:端元和影像进行归一化后,降低了光谱变异性,三种算法的解混精度在整体上提高较大,且对四川丘陵地区的植被覆盖度的反演结果接近真实值。
Abstract:
Because of the fixed spatial resolution in remote sensing images, there is usually a technical issue of decomposing mixed pixels, which comprise both vegetation element and other endmember fractions, degrading interpretation of vegetation coverage by image inversion analysis. By applications to Sentinel 2A remote sensing images, in this study it proposed a spectrum mixture analysis method based on spectral normalization in order to compromise the intra-class spectrum variability of vegetation and pixel mixing with other ground objects. Firstly, endmember matrix and remote sensing images were normalized to reduce spectrum variability of vegetation. Then, it applied three unmixed algorithms, full constrained least squares unmixing(FCLSU), partial constrained least squares unmixing(CLSU)and extended linear mixed model(ELMM)to quantitatively analyze the mixed state of vegetation with other ground objects. To verify the accuracy of our proposed unmixing algorithm, the classification of vegetation coverage obtained by UAV high-resolution images was referred as control group, and their accuracy before and after the normalization was carefully compared for accuracy evaluation. It found that before spectrum were normalized, the R and RMSE of ELMM and CLSU were both close to 0.903 and 0.353, and the two values from FCLSU were 0.869 and 0.434, whereas after the normalization, the R and RMSE of the three algorithms were updated to 0.91 and 0.2. The study suggested that after normalization of endmember and images the spectrum variability was considerably reduced by the three algorithms, with a great improvement in unmixing accuracy, and the inversion results of vegetation coverage in Sichuan hilly region was verified by field survey. ELMM and FCLSU had the highest accuracy, and ELMM was the best for its promotion in operational efficiency. This research would provide a substantial reference for pixel unmixing technology in the application of remote sense science to practices.

参考文献/References:

[1] 张云霞,张云飞,李晓兵.地面测量与ASTER影像综合计算植被盖度[J].生态学报,2007,27(3):964-976. [ZHANG Yunxia, ZHANG Yunfei, LI Xiaobing. The synthetically estimating vegetation fractional coverage of grassland using field data and ASTER remote sensing imagine[J]. Acta Ecologica Sinica, 2007, 27(3): 964-976]
[2] 温庆可,张增祥,刘斌,等.草地覆盖度测算方法研究进展[J].草业科学,2009,26(12):30-36. [WEN Qingke, ZHANG Zengxiang, LIU Bin, et al. Research progress in grassland fractional coverage estimation methods[J]. Pratacultural Science, 2009, 26(12): 30-36]
[3] 陈晋,陈云浩,何春阳,等.基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J].遥感学报,2001,5(6):416-422,481. [CHEN Jin, CHEN Yunhao, HE Chunyang, et al. Sub-pixel model for vegetation fraction estimation based on land cover classification[J]. Journal of Remote Sensing, 2001, 5(6): 416-422, 481]
[4] 胡茂桂,王劲峰.遥感影像混合像元分解及超分辨率重建研究进展[J].地理科学进展,2010,29(6):747-756. [HU Maogui, WANG Jingfeng. Mixed-pixel decomposition and super-resolution reconstruction of remote sensing image[J]. Progress in Geography, 2010, 29(6): 747-756]
[5] FOODY G M, COX D P. Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions[J]. International Journal of Remote Sensing, 1994, 15(3): 619-631.
[6] BOARDMAN J W. Geometric mixture analysis of imaging spectrometry data[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Pasadena, CA, USA: IEEE, 1994: 2369-2371.
[7]KESHAVA N, MUSTARD J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002, 19(1): 44-57.
[8] BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2, SI): 354-379.
[9] ZARE A, HO K C. Endmember variability in hyperspectral analysis: addressing spectral variability during spectral unmixing[J]. IEEE Signal Processing Magazine, 2014, 31(1): 95-104.
[10] HALIMI A, DOBIGEON N, TOURNERET J Y. Unsupervised unmixing of hyperspectral images accounting for endmember variability[J]. IEEE Transactions on Image Processing, 2015, 24(12): 4904-4917.
[11] ECHES O, DOBIGEON N, MAILHES C, et al. Bayesian estimation of linear mixtures using the normal compositional model. application to hyperspectral imagery[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1403-1413.
[12] DU Xiaoxiao, ZARE A, GADER P, et al. Spatial and spectral unmixing using the beta compositional model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6, SI): 1994-2003.
[13] DRUMETZ L, VEGANZONES M A, HENROT S, et al. Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability[J]. IEEE Transactions on Image Processing, 2016, 25(8): 3890-3905.
[14] THOUVENIN P A, DOBIGEON N, TOURNERET J Y. Hyperspectral unmixing with spectral variability using a perturbed linear mixing model[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 525-538.
[15] HONG Danfeng, YOKOYA N, CHANUSSOT J, et al. An augmented linear mixing model to address spectral variability for hyperspectral unmixing[J]. IEEE Transactions on Image Processing, 2019, 28(4): 1923-1938.
[16] IMBIRIBA T, BORSOI R A, BERMUDEZ J C M. Generalized linear mixing model accounting for endmember variability[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary, AB, Canada: IEEE, 2018: 1862-1866.
[17] IORDACHE M, BIOUCAS-DIAS J M, PLAZA A. Sparse unmixing of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2014-2039.
[18] HEINZ D C, CHANG Cheini. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 529-545.
[19] VEGANZONES M A, DRUMETZ L, TOCHON G, et al. A new extended linear mixing model to address spectral variability[C]//Proceedings of the Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. Lausanne, Switzerland: IEEE, 2014: 1-4.
[20] 张渝.考虑能耗指标的山区高等级公路路线方案综合优选研究[D].成都:西南交通大学,2014: 43-48. [ZHANG Yu. Considering energy consumption of the highway route scheme comprehensive optimization study in the mountainous area[D]. Chengdu: Southwest Jiaotong University, 2014: 43-48]
[21] DRUSCH M, DEL BELLO U, CARLIER S, et al. Sentinel-2: ESA's optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120(SI): 25-36.
[22] LI Yingjie, CHEN Jing, MA Qingmao, et al. Evaluation of sentinel-2A surface reflectance derived using Sen2Cor in North America[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(6, SI): 1997-2021.
[23] KRUCK E. Combined IMU sensor calibration and bundle adjustment with BINGO-F[C]//Proceedings of the OEEPE Workshop for Integrated Sensor Orientation. Hannover, Germany: OEEPE Official Publication, 2002: 163-168.
[24] 代婷婷,马骏,徐雁南.基于Agisoft PhotoScan的无人机影像自动拼接在风景园林规划中的应用[J].南京林业大学学报(自然科学版),2018,42(4):165-170. [DAI Tingting, MA Jun, XU Yannan. Application of unmanned aerial vehicle(UAV)image automatic stitching in landscape planning based on Agisoft PhotoScan[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(4): 165-170]
[25] 周亦,张亚亚.利用eCognition进行高分一号卫星数据土地利用现状解译能力测试[J].测绘通报,2016(8):77-80,94. [ZHOU Yi, ZHANG Yaya. Test of land use interpretation ability with satellite data of GF-1 using the eCognition[J]. Bulletin of Surveying and Mapping, 2016(8): 77-80, 94]
[26] NASCIMENTO J M P, BIOUCAS-DIAS J M. Vertex component analysis: a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 898-910.
[27] 肖昊,王杰.基于IDL和MATLAB混合编程的两种光谱混合分析方法比较[J].遥感技术与应用,2017,32(5):858-865. [XIAO Hao, WANG Jie. Comparison between two spectral mixture analysis methods based on IDL and MATLAB[J]. Remote Sensing Technology and Application, 2017, 32(5): 858-865]
[28] HALIMI A, HONEINE P, BIOUCAS-DIAS J M. Hyperspectral unmixing in presence of endmember variability, nonlinearity or mismodeling effects[J]. IEEE Transactions on Image Processing, 2016, 25(10): 4565-4579.
[29] 段金亮,王杰,张婷.一种基于光谱归一化下的植被覆盖度反演算法[J].遥感技术与应用,2018,33(2):252-258. [DUAN Jinliang, WANG Jie, ZHANG Ting. A kind of vegetation cover fraction retrieval algorithm based on spectral normalization frame[J]. Remote Sensing Technology and Application, 2018, 33(2): 252-258]
[30] GENG Xiurui, ZHAO Yongchao, WANG Fuxiang, et al. A new volume formula for a simplex and its application to endmember extraction for hyperspectral image analysis[J]. International Journal of Remote Sensing, 2010, 31(4): 1027-1035.

相似文献/References:

[1]刘军会,高吉喜,王文杰,等.青藏高原植被覆盖变化及其与气候变化的关系[J].山地学报,2013,(02):234.
 LIU Junhui,GAO Jixi,WANG Wenjie().Variations of Vegetation Coverage and Its Relations to Global Climate Changes on the Tibetan Plateau during 1981—2005[J].Mountain Research,2013,(05):234.
[2]欧阳琰,沈渭寿,杨 凯,等.近20 a雅鲁藏布江流域冻融侵蚀演变趋势[J].山地学报,2014,(04):417.
 OUYANG Yan,SHEN Weishou,YANG Kai,et al.The Trend of Freezethaw Erosion in Yarlung Zangbo River Basin in Nearly Twenty Years[J].Mountain Research,2014,(05):417.
[3]刘军会,高吉喜.北方农牧交错带生态系统服务价值测算及变化[J].山地学报,2008,(02):145.
[4]潘学鹏,吴喜芳,沈彦俊,等.三江并流河源区植被覆盖度对气候要素的响应[J].山地学报,2015,(02):218.
 PAN Xuepeng,WU Xifang,et al.Responses of Vegetation Coverage Changes to Climate Factors in the Source Regions of Three Parallel Rivers[J].Mountain Research,2015,(05):218.

备注/Memo

备注/Memo:
收稿日期(Received date):2018-11-08; 改回日期(Accepted data):2019-10-17
基金项目(Foundation item):四川省教育厅自然科学重点项目(17ZA0387; 15ZA0150); 中国科学院战略性先导科技专项(A类)(XDA19040504); 南充市应用技术研究与开发专项项目(17YFZJ0014); 西华师范大学英才基金项目(17YC124)。[Scientific Research Foundation of Sichuan Education Department(17ZA0387; 15ZA0150); Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19040504); Applied Technology Research and Development Projects of Nanchong City(17YFZJ0014); Meritocracy Research Funds of China West Normal University(17YC124)]
作者简介(Biography):胡铁泷(1992-),女,四川南充人,硕士研究生,主要研究方向:遥感数字图像处理。[HU Tieshuang(1992-), female, born in Nanchong, Sichuan province, M.Sc. candidate, research on remote sensing digital image processing] E-mail: 1156975756@qq.com
更新日期/Last Update: 2019-09-30