参考文献/References:
[1] 刘映良,薛建辉. 贵州茂兰退化喀斯特森林数量分类[J]. 贵州师范大学学报:自然科学版,2005,29(3):23-27. [LIU Yingliang, XUE Jianhui. Quantitative properties of degraded Karst forest communities in Maolan mountain area of Guizhou[J].Journal of Nanjing Forestry University(Natural Science s Edition), 2005, 29(3): 23-27]
[2] 李援越,朱守谦,祝小科. 黔中退化喀斯特森林植物群落的数量分类[J]. 山地农业生物学报,2000, 19(2): 97-98. [LI Yuanyue, ZHU Shouqian, ZHU Xiaoke. Number classification of degraded Karst forests in the central Guizhou[J].Journal of Mountain Agriculture and Biology, 2000, 19(2):97-98]
[3] 张建利,吴华,喩理飞,等. 草海湿地流域典型喀斯特森林群落α、β多样性分析[G]//第十五届中国科协年会第19分会场:中国西部生态林业和民生林业与科技创新学术研讨会论文集. 中国科学技术协会学会学术部,2013:7. [ZHANG Jianli, WU Hua, YU Lifei, et al. α、βdiversity analysis of typical karst forest communities in Caohai Wetland River basin[G]// The 19th branch venue of the 15th annual meeting of China association for science and technology. Proceedings of the symposium on scientific and technological innovation and ecological forestry and people's livelihood forestry in western China. Academic department of Chinese association for science and technology, 2013:7]
[4] 魏鲁明, 朱守谦, 李援越. 茂兰喀斯特森林数量分类学初步研究[G]//朱守谦. 喀斯特森林生态研究(Ⅰ). 贵阳:贵州科技出版社,1993: 22-50. [WEI Luming, ZHU Shouqian, LI Yuanyue. Preliminary study on numberical classification of Maolan Karst foreset[G]. ZHU Shouqian. Ecological research on karst forest(Ⅰ). Guiyan: Guizhou Publishing House of Science and Technology, 1993: 22-50]
[5] ROSINDELL J, HUBBELL S, ETIENNE R. The Unified Neutral Theory of Biodiversity and Biogeography at Age Ten[J]. Trends in Ecology & Evolution, 2011, 26:340-348.
[6] 黄建雄,郑凤英,米湘成. 不同尺度上环境因子对常绿阔叶林群落的谱系结构的影响[J]. 植物生态学报,2010, 34(3): 309-315.[HUANG Jianxiong, ZHENG Fengying, MI Xiangcheng. Influence of environmental factors on phylogenetic structure at multiple spatial scales in an evergreen broad-leaved forest of China[J]. Chinese Journal of Plant Ecology, 2010, 34(3):309-315]
[7] WEBB C O, ACKERLY D D, MCPEEK M A. et al. Phylogenies and community ecology[J]. Annual Review of Ecology & Systematics, 2002, 33: 475-505.
[8] SWENSON N G, ENQUIST B J, PITHER J, et al. The problem and promise of scale dependency in community phylogenetics[J]. Ecology, 2006, 87(10): 2418-2424.
[9] SWENSON N G, ENQUIST B J, THOMPSON J, et al. The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities[J]. Ecology, 2007, 88(7): 1770-1780.
[10] KEMBEL S W, HUBBELL S P. The phylogenetic structure of a neotropical forest tree community[J]. Ecology, 2006, 87(7Suppl):86-99.
[11] SWENSON N G, ENQUIST B J, THOMPSON J, et al. The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities[J]. Ecology, 2007, 88(7):1770-1780.
[12] LETCHER S G. Phylogenetic structure of angiosperm communities during tropical forest Succession[J]. Proceedings of the Royal Society B: Biological Sciences, 2010, 277(1678): 97-104.
[13] 龙翠玲. 茂兰喀斯特森林林隙植被恢复的物种组成及生活型特征[J]. 云南植物研究, 2007, 29(2):201-206. [LONG Cuiling. Species composition and life form feature of vegetation restoration in gaps of Karst forest in Maolan Nature Reserve, Guizhou Province[J]. Acta Botanica Yunnanica, 2007, 29(2): 201-206]
[14] 牛红玉,王峥峰,练琚愉, 等. 群落构建研究的新进展: 进化和生态相结合的群落谱系结构研究[J]. 生物多样性,2013, 19(3): 275-283. [NIU Hongyu,WANG Zhengfeng, LIAN Juyu, et al. New progress in community assembly: community phylogenetic structure combining evolution and ecology[J]. Biodiversity Science, 2013, 19(3): 275-283]
[15] ZANNE A E, TANK D C, CORNWELL W K, et al. Three keys to the radiation of angiosperms into freezing environments[J]. Nature, 2014, 506: 89-92.
[16] SMITH S A, BROWN J W. Constructing a broadly inclusive seed plant phylogeny[J]. American Journal of Botany, 2018, 105: 302-314.
[17] JIN Yi, QIAN Hong. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants[J]. Ecography, 2019, 42: 1353-1359.
[18] KEMBEL S W, COWAN P D, HELMUS M R, et al. Picante: R tools for integrating phylogenies and ecology[J]. Bioinformatics, 2010, 26:1463-1464.
[19] KEMBEL S W, CAHILL Jr J F. Independent evolution of leaf and root traits within and among temperate grassland plant communities[J]. PLoS ONE, 2011, 6(6): e19992.
[20] GRAHAM A. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time[J]. American Journal of Botany, 2011, 98(3): 336-351.
[21] CONDAMINE F L, SPERLING F A H, WAHLBERG N, et al. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity[J]. Ecology Letters, 2012, 15(3):267-277.
[22] GRAHAM C H, PARRA J L, RAHBEK C, et al. Phylogenetic structure in tropical hummingbird communities. Proceedings of the National Academy of Sciences[M]. USA, 2009, 106:19673-19678.
[23] QIAN H, ZHANG J, SANDEL B, et al. Phylogenetic structure of angiosperm trees in local forest communities along latitudinal and elevational gradients in Eastern North America[J]. Ecography, 2019:1-12. DOI: 10.1111/ecog.04873.