[1]王 建,赵牡丹*,李健波,等.基于MODIS时序数据的秦巴山区生态环境质量动态监测及驱动力分析[J].山地学报,2021,(6):830-841.[doi:10.16089/j.cnki.1008-2786.000642]
 WANG Jian,ZHAO Mudan*,LI Jianbo,et al.Dynamic Monitoring and Driving Forces of Eco-Environmental Quality in the Qinba Mountains Based on MODIS Time-Series Data[J].Mountain Research,2021,(6):830-841.[doi:10.16089/j.cnki.1008-2786.000642]
点击复制

基于MODIS时序数据的秦巴山区生态环境质量动态监测及驱动力分析()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第6期
页码:
830-841
栏目:
山地环境
出版日期:
2021-11-25

文章信息/Info

Title:
Dynamic Monitoring and Driving Forces of Eco-Environmental Quality in the Qinba Mountains Based on MODIS Time-Series Data
文章编号:
1008-2786-(2021)6-830-12
作者:
王 建12赵牡丹12*李健波 12郑春燕3
1.西北大学 城市与环境学院,西安710127; 2.陕西省遥感与地理信息工程研究中心,西安 710127; 3.湖北师范大学 城市与环境学院,湖北 黄石435002
Author(s):
WANG Jian12 ZHAO Mudan12* LI Jianbo12 ZHENG Chunyan3
1.College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; 2. Shaanxi Remote Sensing and Geographic Information Engineering Research Center, Xi 'an 710127, China; 3. School of City and Environment, Hubei Normal University, Huangshi 435002, Hubei, China
关键词:
遥感生态指数 MODIS 相关性分析 地理探测器 秦巴山区
Keywords:
remote sensing ecological index MODIS correlation analysis geographic exploration Qinba Mountains
分类号:
K903
DOI:
10.16089/j.cnki.1008-2786.000642
文献标志码:
A
摘要:
生态环境质量评价是开展秦巴山区生态环境保护和生态文明建设的重要基础。现有研究多利用统计数据或者单一指标探讨秦巴山区生态环境状况,但难以揭示研究区内部生态系统的复杂性和整体性。本文选取2002—2020年的MODIS系列遥感数据,借助主成分分析法提取遥感生态指数并探究秦巴山区生态环境质量的时空分异特征,综合地理探测器和相关性分析方法对影响该区域生态环境质量的驱动力进行量化分析。结果表明:(1)绿度、热度、湿度以及干度的第一主成分贡献率均高于50%,说明基于第一主成分提取的遥感生态指数能够较好地表征秦巴山区的生态环境状况。(2)2002—2020秦巴山区的生态环境质量总体呈现波动上升的趋势,地域差异明显,呈“中间高四周低”的空间特征; 区域内生态环境质量存在轻微退化和轻微改善并存现象,其中轻微退化主要分布在东部和中部地形较平坦地区,轻微改善主要集中在大巴山和龙门山地区。(3)生态环境质量随高程和坡度变化均呈现先变好再变差的趋势,且阶段性变化特征显著,与气温、降水具有显著的相关性; 人为因子对生态环境质量的影响主要表现在退耕区的生态环境质量明显高于未退耕区和全区整体水平,说明生态恢复工程有利于改善区域生态状况。本研究可为山区生态环境质量的评估和改善提供实践参考和理论支撑。
Abstract:
Eco-environment quality evaluation is a prerequisite for environmental protection and ecological civilization construction in the Qinba Mountains. Past researches on the Qinba Mountains mostly were conducted by statistical method, which only used single index to discuss its eco-environmental quality, but it was difficult to fairly reveal the complexity and integrity of the internal ecosystem in the Qinba Mountains. To address this issue, Principal Component Analysis(PCA)was used to extract remote sensing ecological index based MODIS time-series data from 2002 to 2020, to explore the temporal-spatial characteristics of eco-environmental quality in Qinba Mountains. Driving forces influencing eco-environment quality were determined by a combination of comprehensive geographic detectors and correlation analysis. Findings are as follows:(1)The contribution rate of NDVI, Land surface temperature(LST),WETNESS and DRYNESSon the first principal component was higher than 50%, suggesting that remote sensing ecological index based on the first principal component could well characterize ecological environment in the Qinba Mountains.(2)From 2002 to 2020, eco-environmental quality in the Qinba Mountains presented a fluctuating and upward trend. Regional differences were significant, characterized as “high in the middle and low in the surroundings”. Both slight degradation and slight improvement existed in the region. The slight degradation was mainly distributed in the eastern and central areas over relatively flat terrains, and the slight improvement was mainly distributed in the Daba and Longmen Mountains.(3)Eco-environmental quality initially improved and then deteriorate along the gradient in elevation and slope, which indicated periodic changes and significantly correlated with temperature and precipitation. With respect to the impact of human activity, much higher eco-environmental quality was observed in the returned farmland, compared to non-returned and the whole region, which indicated that ecological restoration project greatly contributed to improve ecological environment in the region. These findings provide a scientific basis for the evaluation and improvement of eco-environmental quality in the Qinba Mountains and similar regions.

参考文献/References:

[1] VOROSMARTY C J, PAHL-WOSTL C, BHADURI A. Water in the anthropocene: New perspectives for global sustainability [J]. Current Opinion in Environmental Sustainability, 2013,5(6):535-538. DOI: 10.1016/j.cosust.2013.11.011
[2] 刘栩位, 周启刚, 周浪, 等. 基于RSEI的三峡库区重庆段水土保持生态功能区生态环境质量动态监测[J]. 水土保持研究, 2021,28(5):278-286. [LIU Xuwei, ZHOU Qigang, ZHOU Lang, et al. RSEI-based dynamic monitoring of ecological quality of the soil and water conservation functional area in the Chongqing section of the Three Gorges Reservoir area [J]. Research of Soil and Water Conservation, 2021,28(5):278-286] DOI: 10.13869/j.cnki.rswc.2021.05.032
[3] 李建豪, 陶建斌, 程波, 等. 秦岭山区植被春季物候的海拔敏感性[J]. 应用生态学报, 2021,32(6):2089-2097. [LI Jianhao, TAO Jianbin, CHENG Bo, et al. Sensitivity of spring phenology to elevation in Qinling Mountains, China [J]. Chinese Journal of Applied Ecology, 2021,32(6):2089-2097] DOI: 10.13287/j.1001-9332.202106.016
[4] 孟清, 白红英, 赵婷, 等. 秦岭山地气候变化的地形效应[J]. 山地学报, 2020,38(2):180-189. [MENG Qing, BAI Hongying, ZHAO Ting, et al. Topographic characteristic of climate change in the Qinling Mountains, China [J]. Mountain Research, 2020,38(2):180-189] DOI: 10.16089/j.cnki.1008-2786.000500
[5] 杨楠, 王小文, 卓悦. 陕南地区生态环境状况综合评价及对策[J]. 水土保持通报, 2008,28(2):190-194. [YANG Nan, WANG Xiaowen, ZHOU Yue. Evaluation and countermeasures of eco-environmental status in south Shaanxi province [J]. Bulletin of Soil and Water Conservation, 2008,28(2):190-194] DOI: 10.13961/j.cnki.stbctb.2008.02.020
[6] 姜雨璇, 查小春, 纪惠文. 秦巴山区中部生态敏感性时空演变及影响因素[J]. 中山大学学报(自然科学版), 2021: 2020D063. [JIANG Yuxuan, ZHA Xiaochun, JI Huiwen. Spatial-temporal evolution of ecological sensitivity and its influencing factors in the central Qinling-Daba Mountains area [J]. Acta Scientiarum Naturalium Nuiversitatis Sunyatseni, 2021: 2020D063] DOI: 10.13471/j.cnki.acta.snus.2020D063
[7] 刘宪锋, 潘耀忠, 朱秀芳, 等. 2000—2014年秦巴山区植被覆盖时空变化特征及其归因[J]. 地理学报, 2015,70(5):705-716. [LIU Xianfeng, PAN Yaozhong, ZHU Xiufang, et al. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors [J]. Acta Geographica Sinica, 2015,70(5):705-716] DOI: 10.11821/dlxb201505003
[8] 陈超男, 朱连奇, 田莉, 等. 秦巴山区植被覆盖变化及气候因子驱动分析[J]. 生态学报, 2019,39(9):3257-3266. [CHEN Chaonan, ZHU Lianqi, TIAN Li, et al. Spatial-temporal changes in vegetation characteristics and climate in Qinling-Daba Mountains [J]. Acta Ecologica Sinica, 2019,39(9):3257-3266] DOI: 10.5846/stxb201801300252
[9] 李美丽, 尹礼昌, 张园, 等. 基于MODIS-EVI的西南地区植被覆盖时空变化及驱动因素研究[J]. 生态学报,2021,41(3):1138-1147. [LI Meili, YIN Lichang, ZHANG Yuan, et al. Spatial-temporal dynamics of fractional vegetation coverage based on MODIS-EVI and its driving factors in southwest China [J]. Acta Ecologica Sinica, 2021,41(3):1138-1147] DOI: 10.5846/ stxb201907101451
[10] 陈亮, 王学雷, 杨超, 等. 2000—2018年鄂西山区植被EVI时空变化特征及其地形效应[J]. 长江流域资源与环境, 2021,30(2):419-426. [CHEN Liang, WANG Xuelei, YANG Chao, et al. Spatio-temporal variation characteristics of vegetation EVI and their topographic effects in the west mountain regions of Hubei province from 2000 to 2018 [J]. Resources and Environment in the Yangtze River Basin, 2021,30(2):419-426] DOI: 10.11870/cjlyzyyhj202102016
[11] 李金珂, 杨玉婷, 张会茹, 等. 秦巴山区近15年植被NPP时空演变特征及自然与人为因子解析[J]. 生态学报, 2019,39(22):8504-8515. [LI Jinke, YANG Yuting, ZHANG Huiru, et al. Spatio-temporal variations of net primary productivity and its natural and human factors analysis in Qinling-Daba Mountains in the past 15 years [J]. Acta Ecologica Sinica, 2019,39(22):8504-8515] DOI: 10.5846/stxb201807231575
[12] 王耀斌, 赵永华, 韩磊, 等. 2000—2015年秦巴山区植被净初级生产力时空变化及其趋动因子[J]. 应用生态学报, 2018,29(7):2373-2381. [WANG Yaobin, ZHAO Yonghua, HAN Lei, et al. Spatiotemporal variation of vegetation net primary productivity and its driving factors from 2000 to 2015 in Qinling-Daba Mountains, China [J]. Chinese Journal of Applied Ecology, 2018,29(7):2373-2381] DOI: 10.13287/j.1001-9332.201807.010
[13] 章金城, 周文佐. 2006—2015年秦巴山区植被光合有效辐射吸收比例的时空变化特征[J]. 生态学杂志, 2019,38(5):1453-1463. [ZHANG Jincheng, ZHOU Wenzuo. Spatial-temporal changes of fraction of absorbed photosynthetically active radiation in Qinling-Daba Mountains from 2006 to 2015 [J]. Chinese Journal of Ecology, 2019,38(5):1453-1463] DOI: 10.13292/j.1000-4890.201905.018
[14] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013,33(5):889-897. [XU Hanqiu. A remote sensing index for assessment of regional ecological changes [J]. China Environmental Science, 2013,33(5):889-897] DOI: 1000-6923(2013)05-0889-09
[15] 陈炜, 黄慧萍, 田亦陈, 等. 基于Google Earth Engine平台的三江源地区生态环境质量动态监测与分析[J]. 地球信息科学学报, 2019,21(9):1382-1391. [CHEN Wei, HUANG Huiping, TIAN Yichen, et al. Monitoring and assessment of the eco-environment quality in the Sanjiangyuan region based on Google Earth Engine [J]. Journal of Geo-information Science, 2019,21(9):1382-1391] DOI: 10.12082/dqxxkx.2019.190095
[16] 王志超, 何新华. 基于植被覆盖度和遥感生态指数的成都市锦江区生态质量评估[J]. 生态与农村环境学报, 2021,37(4):492-500. [WANG Zhichao, HE Xinhua. Assessments of ecological quality in Jinjiang district of Chengdu city using the FVC and RSEI models [J]. Journal of Ecology and Rural Environment, 2021,37(4):492-500] DOI: 10.19741/j.issn.1673-4831.2020.0511
[17] 王渊, 赵宇豪, 吴健生. 基于Google Earth Engine云计算的城市群生态质量长时序动态监测——以粤港澳大湾区为例[J]. 生态学报, 2020,40(23):8461-8473. [WANG Yuan, ZHAO Yuhao, WU Jiansheng. Dynamic monitoring of long time series of ecological quality in urban agglomerations using Google Earth Engine cloud computing: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area, China [J]. Acta Ecologica Sinica, 2020,40(23):8461-8473] DOI: 10.5846 /stxb202006251650
[18] 魏雨涵, 钱建平, 范伟伟, 等. 基于RSEI的漓江流域生态环境质量动态监测[J]. 中国水土保持科学, 2021,19(1):122-131. [WEI Yuhan, QIAN Jianping, FAN Weiwei, et al. Dynamic monitoring of ecological environment quality in Lijiang River Basin based on RSEI [J]. Science of Soil and Water Conservation, 2021,19(1):122-131] DOI: 10.16843/j.sswc.2021.01.015
[19] 缪鑫辉, 梁勤欧. 基于遥感生态指数的甬江流域生态环境变化分析[J]. 长江流域资源与环境, 2021,30(2):427-438. [MIAO Xinhui, LIANG Qinou. Analysis of ecological environment changes in Yongjiang River Basin based on remote sensing ecological index [J]. Resources and Environment in the Yangtze Basin, 2021,30(2):427-438] DOI: 10.11870 /cjlyzyyhj202102017
[20] 李婷婷, 马超, 郭增长. 基于RSEI模型的贺兰山长时序生态质量评价及影响因素分析[J]. 生态学杂志, 2021,40(4):1154-1165. [LI Tingting, MA Chao, GUO Zengchang. Ecological quality evaluation and influencing factors analysis of Helan Mountain based on RSEI [J]. Chinese Journal of Ecology, 2021,40(4):1154-1165] DOI: 10.13292/j.1000-4890.202104.027
[21] 杨绘婷, 徐涵秋. 基于遥感空间信息的武夷山国家级自然保护区植被覆盖度变化与生态质量评估[J]. 应用生态学报, 2020,31(2):533-542. [YANG Huiting, XU Hanqiu. Assessing fractional vegetation cover changes and ecological quality of the Wuyi Mountain National Nature Reserve based on remote sensing spatial information [J]. Chinese Journal of Applied Ecology, 2020,31(2):533-542] DOI: 10.13287/j.1001-9332.202002.014
[22] 吴宜进, 赵行双, 奚悦, 等. 基于MODIS的2006—2016年西藏生态质量综合评价及其时空变化[J]. 地理学报, 2019,74(7):1438-1449. [WU Yijin, ZHAO Xingshuang, XI Yue, et al. Comprehensive evaluation and spatial-temporal changes of eco-environmental quality based on MODIS in Tibet during 2006-2016 [J]. Acta Geographica Sinica, 2019,74(7):1438-1449] DOI: 10.11821/dlxb201907012
[23] HU Xisheng, XU Hanqiu. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou city, China [J]. Ecological Indicators, 2018,89:11-21. DOI: 10.1016/j.ecolind.2018.02.006
[24] 王丽平, 段四波, 张霄羽, 等. 2003—2018年中国地表温度年最大值的时空分布及变化特征[J].干旱区地理, 2021,44(5):1299-1308. [WANG Liping, DUAN Sibo, ZHANG Xiaoyu, et al. Spatio-temporal distribution and variation characteristics of annual maximum land surface temperature in China during 2003-2018 [J]. Arid Land Geography, 2021,44(5):1299-1308] DOI: 10.12118/j.issn.1000-6060.2021.05.11
[25] CHEN Chao, FU Jiaoqi, ZHANG Shuai, et al. Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images [J]. Estuarine, Coastal and Shelf Science, 2019,217:281-291. DOI: 10.1016/j.ecss.2018.10.021
[26] LIU Chao, YANG Minghui, HOU Yuting, et al. Spatiotemporal evolution of island ecological quality under different urban densities: A comparative analysis of Xiamen and Kinmen Islands, southeast China [J]. Ecological Indicators, 2021,124:107438. DOI: 10.1016/j.ecolind.2021.107438
[27] 徐涵秋. 水土流失区生态变化的遥感评估[J]. 农业工程学报, 2013,29(7):91-97. [XU Hanqiu. Assessment of ecological change in soil loss area using remote sensing technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(7):91-97] DOI: 10.3969/j.issn.1002-6819.2013.07.012
[28] 覃巧婷, 陈建军, 杨艳萍, 等. 黄河源区植被时空变化及其对地形和气候的响应[J]. 中国环境科学, 2021,41(8):3832-3841. [QIN Qiaoting, CHEN Jianjun, YANG Yanping, et al. Spatial and temporal variations of vegetation and its response to topography and climate in the source region of the Yellow River [J]. China Environmental Science, 2021,41(8):3832-3841] DOI: 10.19674/j.cnki.issn1000-6923.20210324.005
[29] 王戈, 于强, YANG Di, 等. 京津冀城市群生态空间格局变化与地表温度关系研究[J]. 农业机械学报, 2021,52(1):209-218. [WANG Ge, YU Qiang, YANG Di, et al. Relationship between change of ecological spatial pattern and land surface temperature in Beijing-Tianjin-Hebei urban agglomeration [J]. Transactions of the Chinese Society of Agricultural Machinery, 2021,52(1):209-218] DOI: 10.6041/j.issn.1000-1298.2021.01.024
[30] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017,72(1):116-134. [WANG Jinfeng, XU Chengdong. Geodetector: Principle and prospective [J]. Acta Geographica Sinica, 2017,72(1):116-134] DOI: 10.11821/dlxb201701010
[31] 任彦霓, 周廷刚, 李洪忠, 等. 基于遥感和POI数据的重庆市主城区城市生态环境格局研究[J]. 地球物理学进展, 2021,36(2):766-778. [REN Yanni, ZHOU Tinggang, LI Hongzhong, et al. Research on the urban ecological environment pattern in the main urban area of Chongqing based on remote sensing and POI data [J]. Progress in Geophysics, 2021,36(2):766-778] DOI: 10.6038/pg2021EE0499
[32] 陈晨, 王义民, 黎云云, 等. 黄河流域1982—2015年不同气候区植被变化规律及其影响因素[J]. 长江科学院院报, 2021:20201075. [CHEN Chen, WANG Yimin, LI Yunyun, et al. Vegetation changes and influencing factors in different climatic regions of the Yellow River Basin from 1982 to 2015 [J]. Journal of Yangtze River Scientific Research Institute, 2021:20201075. DOI: 10.11988/ckyyb.20201075
[33] 张静, 任志远. 汉江流域植被净初级生产力时空格局及成因[J]. 生态学报, 2016,36(23):7667-7677. [ZHANG Jing, REN Zhiyuan. Spatiotemporal pattern of net primary productivity in the Hanjiang River Basin [J]. Acta Ecologica Sinica, 2016,36(23):7667-7677] DOI: 10.5846/stxb201512012402
[34] 郑子豪, 吴志峰, 陈颖彪, 等. 基于Google Earth Engine的长三角城市群生态环境变化与城市化特征分析[J]. 生态学报, 2021,41(2):717-729. [ZHENG Zihao, WU Zhifeng, CHEN Yingbiao, et al. Analyzing the ecological environment and urbanization characteristics of the Yangtze River Delta urban agglomeration based on Google Earth Engine [J]. Acta Ecologica Sinica, 2021,41(2):717-729] DOI: 10.5846/stxb202003250687
[35] 邓元杰, 侯孟阳, 谢怡凡, 等. 退耕还林还草工程对陕北地区生态系统服务价值时空演变的影响[J]. 生态学报, 2020,40(18):6597-6612. [DENG Yuanjie, HOU Mengyang, XIE Yifan, et al. Impact of the grain for Green Project on the temporal and spatial evolution of ecosystem service value in northern Shaanxi [J]. Acta Ecologica Sinica, 2020,40(18):6597-6612] DOI: 10.5846/stxb201907171516

相似文献/References:

[1]王其新,王召海*,陈飞龙.济南市南部山区热力景观空间格局[J].山地学报,2016,(04):425.[doi:10.16089/j.cnki.1008-2786.000147]
 WANG Qixin,WANG Zhaohai,CHEN Feilong.Spatial Pattern of Thermal Landscape in the South Mountain Region in Ji'nan City Based on Multi Source Remote Sensing Data[J].Mountain Research,2016,(6):425.[doi:10.16089/j.cnki.1008-2786.000147]
[2]闫戈丁,景海涛*,何 湜,等.太行山区生态环境质量时空变化与演变趋势[J].山地学报,2023,(3):335.[doi:10.16089/j.cnki.1008-2786.000752 ]
 YAN Geding,JING Haitao*,HE Shi,et al.Spatial-Temporal Variation and Evolutionary Trends of Eco-Environment Quality in the Taihang Mountains, China[J].Mountain Research,2023,(6):335.[doi:10.16089/j.cnki.1008-2786.000752 ]

备注/Memo

备注/Memo:
收稿日期(Received date):2021-05-31; 改回日期(Accepted date): 2021-10-05
基金项目(Foundation item):国家自然科学基金(41271284)。[National Natural Science Foundation of China(41271284)]
作者简介(Biography):王建(1995-),男,四川广元人,硕士研究生,主要研究方向:遥感生态环境监测。[WANG Jian(1995-), male, born in Guangyuan, Sichuan province, M.Sc. candidate, research on remote sensing ecological environment monitoring] E-mail: wang_jian@stumail.nwu.edu.cn
*通讯作者(Corresponding author):赵牡丹(1969-),女,陕西富平人,博士,副教授,主要研究方向:土地利用规划和数字地形。 [ZHAO Mudan(1969-), female, born in Fuping, Shaanxi province, Ph.D., associate professor, research on land use planning and digital topography research] E-mail: zmudan@nwu.edu.cn
更新日期/Last Update: 2021-11-30