参考文献/References:
[1] DIAZ S, KATTGE J, CORNELISSE J H C, et al. The global spectrum of plant form and function [J]. Nature, 2016, 529: 167-171. DOI: 10.1038/nature16489
[2] WESTOBY M, FALSTER D S, MOOLES A T, et al. Plant ecological strategies: Some leading dimensions of variation between species [J]. Annual Review of Ecology and Systematics, 2002, 33: 125-159. DOI: 10.1146/annurev.ecolsys.33.010802.150452
[3] GRIME J P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory [J]. The American Naturalist, 1977, 111: 1169-1194. DOI: 10.1086/283244
[4] PIERCE S, NEGREIROS D, CERABOLINI B E L, et al. A global method for calculating plant CSR ecological strategies applied across biomes world-wide [J]. Functional Ecology, 2017, 31: 444-457. DOI: 10.1111/1365-2435.12722
[5] LI Yuanzhi, SHIPLEY B. An experimental test of CSR theory using a globally calibrated ordination method [J]. Plos One, 2017, 12(4): e0175404. DOI: 10.1371/journal.pone.0175404
[6] BORNHOFEN S, BAROT S, LATTAU C. The evolution of CSR life-history strategies in a plant model with explicit physiology and architecture [J]. Ecological Modelling, 2011, 222(1): 1-10. DOI: 10.1016/j.ecolmodel.2010.09.014
[7] 姚忠, 吴永明, 游海林, 等. 竞争-耐胁迫-杂草型植物策略理论及其应用研究进展 [J]. 生态学报, 2022, 42(1): 24-36. [YAO Zhong, WU Yongming, YOU Hailin, et al. Research progress of plant competitor-stress tolerator-ruderal(CSR)theory and its application [J]. Acta Ecologic Sinica, 2022, 42(1): 24-36] DOI: 10.5846/stxb202101060055
[8] GRIME J P. Vegetation classification by reference to strategies [J]. Nature, 1974, 250: 26-31. DOI: 10.1038/250026a0
[9] HODGSO J G, WILSON P J, HUNT R, et al. Allocating C-S-R plant functional types: A soft approach to a hard problem [J]. Oikos, 1999, 85(2): 282-294.
[10] MOOR H, HYLANDER K, NORBERG J. Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits [J]. Ambio, 2015, 44(S1): S113-S126. DOI: 10.1007/s13280-014-0593-9
[11] BEAUMOUT S, BURNS K C. Vertical gradients in leaf trait diversity in a New Zealand forest [J]. Trees, 2009, 23: 339-346. DOI: 10.1007/s00468-008-0282-z
[12] WRIGHT I J, REICH P B, CORNELISSEN J H C, et al. Modulation of leaf economic traits and trait relationships by climate [J]. Global Ecology and Biogeography, 2005, 14(5): 411-421. DOI: 10.1111/j.1466-822x.2005.00172.x
[13] 许佳宁. 湿地植物多样性及功能性状对土壤水分变化的响应 [D]. 北京: 北京林业大学, 2016: 6. [XU Jianing. The response of wetland plant diversity and functional trait to soil moisture [D]. Beijing: Beijing Forestry University, 2016: 6]
[14] 朱弘, 杨乐, 李东宾, 等. 浙江四明山沼泽湿地植物功能性状研究 [J]. 生态学报, 2023, 43(7): 2881-2890. [ZHU Hong, YANG Le, LI Dongbin, et al. Functional traits of twelve species of marsh plants in Siming Mountain, Zhejiang, China [J]. Acta Ecologica Sinica, 2023, 43(7): 2881-2890] DOI: 10.5846/stxb202203300788
[15] 张睿, 刘华民, 寇欣, 等. 内蒙古高原湖滨湿地优势植物功能性状特征及其适应性 [J]. 生态学报, 2022, 42(19): 7773-7784. [ZHANG Rui, LIU Huamin, KOU Xin, et al. Functional traits of dominant plants and their adaptations in lakeshore wetlands of the Inner Mongolia Plateau [J]. Acta Ecologica Sinica, 2022, 42(19): 7773-7784] DOI: 10.5846/stxb202110092802
[16] 刘贤娴, 李俊清. 北京野鸭湖湿地植物叶功能性状研究 [J]. 安徽农业科学, 2008, 36(20): 8406-8409+8428. [LIU Xianxian, LI Junqing. Study on the functional traits of plant leaf in Beijing Yeyahu wetland [J]. Journal of Anhui Agricultural Sciences, 2008, 36(20): 8406-8409+8428] DOI: 10.13989/j.cnki.0517-6611.2008.20.019
[17] 黎莉, 冯树丹, 王建波, 等. 三江平原12种湿地植物光合特性与叶功能性状的关系研究 [J]. 湿地科学, 2010, 8(3): 225-232. [LI Li, FENG Shudan, WANG Jianbo, et al. Relationship between photosynthetic characteristics and leaf functional traits of 12 plants species of marshes in Sanjiang Plain [J]. Wetland Science, 2010, 8(3): 225-232] DOI: 10.13248/j.cnki.wetlandsci.2010.03.001
[18] 白江珊, 唐浩然, 娄彦景. 水深和氮添加对湿地植物功能性状的影响研究进展 [J]. 生态学杂志, 2021, 40(9): 2987-2995. [BAI Jiangshan, TANG Haoran, LOU Yanjing. Effects of water depth and nitrogen addition on functional traits of wetland plants: A review [J]. Chinese Journal of Ecology, 2021, 40(9): 2987-2995] DOI: 10.13292/j.1000-4890.202109.002
[19] 褚青帅. 环境因素对青藏高原拉萨河流域湿地植物功能性状的影响 [D]. 拉萨: 西藏大学, 2021: 9. [CHU Qingshuai. Effects of environmental factors on the functional traits of wetland plants in the Lhasa River Basin on the Tibetan Plateau [D]. Lhasa: Tibet University, 2021: 9]DOI: 10.27735/d.cnki.gxzdx
[20] 上官铁梁, 张峰, 张龙胜, 等. 山西湿地维管植物区系多样性研究 [J]. 木本植物研究, 2000, 20(3): 275-281. [SHANGUAN Tieliang, ZHANG Feng, ZHANG Longsheng, et al. Study on diversity of vascular plant of wetland in Shanxi [J]. Bulletin of Botanical Research, 2000, 20(3): 275-281] DOI: 10.3969/j.issn.1673-5102.2000.03.015
[21] 张龙胜, 宋伯为, 王汝清, 等. 山西湿地野生植物资源研究 [J]. 山西大学学报(自然科学版), 1998, 21(3): 281-285. [ZHANG Longsheng, SONG Bowei, WANG Ruqing, et al. A study on the wild plant resources of wetlands in Shanxi [J]. Journal of Shanxi University(Natural Science Edition), 1998, 21(3): 281-285]
[22] 王璐. 山西省自然保护区湿地植物多样性研究 [D]. 内蒙古: 内蒙古大学, 2014: 1-2. [WANG Lu. Research on diversity of wetland plants nature reserves of Shanxi province [D]. Inner Mongolia: Inner Mongolia University, 2014: 1-2] DOI: 10.7666/d.Y2571764
[23] 王璠. 山西文峪河国家湿地公园种子植物区系和植物群落分类排序 [D]. 太谷: 山西农业大学, 2018: 1-2. [WANG Fan. Ecological study of wetland plant community in Shanxi Wenyuhe Wetland National Park [D]. Taigu: Shanxi Agricultural University, 2018: 1-2]
[24] 李帅. 黄河中游湿地植物多样性研究 [D]. 太原: 山西大学, 2016: 6. [LI Shuai. Study on plant diversity in the wetland of middle Yellow River [D].Taiyuan: Shanxi University, 2016: 6]
[25] 贾蕙君. 黄河中游(禹门口—汾河入黄口)水因子与湿地植物多样性的相关关系研究 [D]. 太原: 山西大学, 2017: 8. [JIA Huijun. Study on the relationship between water factors and plant diversity of wetland in the middle reaches of the Yellow River(Yumenkou -Fenhe into the Yellow River mouth)[D]. Taiyuan: Shanxi University, 2017: 8]
[26] 李素清, 武冬梅, 王涛, 等. 山西长治湿地草本植物优势种群和群落的空间格局分析 [J]. 草业学报, 2011, 20(3): 43-50. [LI Suqing, WU Dongmei, WANG Tao, et al. Spatial pattern analysis of herbaceous community for dominant species and communities in Changzhi wetland, Shanxi [J]. Acta Prataculturae Sinica, 2011, 20(3): 43-50] DOI: 10.11686/cyxb20110305
[27] CHEN Yahan, HAN Wenxuan, TANG Luying, et al. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form [J]. Ecography, 2013, 36(2): 178-184. DOI: 10.1111/j.1600-0587.2011.06833.x
[28] 赵广帅, 刘珉, 石培礼, 等. 羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策 [J]. 生态学报, 2020, 40(1): 295-309. [ZHAO Guangshuai, LIU Min, SHI Peili, et al. Variation of leaf and root traits and ecological adaptative strategies along a precipitation gradient on Changtang Plateau [J]. Acta Ecologic Sinica, 2020, 40(1): 295-309] DOI: 10.5846/stxb201811262562
[29] 宋彦涛, 周道玮, 王平, 等. 松嫩草地66种草本植物叶片性状特征 [J]. 生态学报, 2013, 33(1): 79-88. [SONG Yantao, ZHOU Daowei, WANG Ping, et al. Leaf traits of 66 herbaceous species in Songnen grassland in northeast China [J]. Acta Ecologic Sinica, 2013, 33(1): 79-88] DOI: 10.5846/stxb201111041666
[30] 王晶苑, 王绍强, 李纫兰, 等. 中国四种森林类型主要优势植物的C:N:P化学计量学特征 [J]. 植物生态学报, 2011, 35(6): 587-595. [WANG Jinyuan, WANG Shaoqiang, LI Renlan, et al. C:N:P stoichiometric characteristics of four forest types' dominant tree species in China [J]. Chinese Journal of Plant Ecology, 2011, 35(6): 587-595] DOI: 10.3724/SP.J.1258.2011.00587
[31] 第二届植物学名词审定委员会[M]. 植物学名词. 2版. 北京: 科学出版社, 2019: 298. [The Second Botanical Terminology Committee. Botanical nouns [M]. 2nd ed. Beijing: Science Press, 2019: 298]
[32] JENKINS D G, PIERCE S. General allometric scaling of net primary production agrees with plant adaptive strategy theory and has tipping points [J]. Journal of Ecology, 2017, 105: 1094-1104. DOI: 10.1111/1365-2745.12726
[33] 赵可夫. 植物对水涝胁迫的适应 [J]. 生物学通报, 2003, 38(14): 11-14. [ZHAO Kefu. Adaptation of plants to waterlogging stress [J]. Bulletin of Biology, 2003, 38(14): 11-14] DOI: 10.3969/j.issn.0006-3193.2003.12.004
[34] 周智彬, 李培军. 我国旱生植物的形态解剖学研究 [J]. 干旱区研究, 2002, 19(2): 35-40. [ZHOU Zhibin, LI Peijun. A review on the phytotomy research of Xerophytes in China [J]. Arid Zone Research, 2002, 19(2): 35-40] DOI: 10.13866/j.azr.2002.02.008
[35] 李正理. 旱生植物的形态和结构 [J]. 生物学通报, 1981(4): 9-12. [LI Zhengli. Morphology and structure of xerophytes [J]. Bulletin of Biology, 1981(4): 9-12]
[36] BILLINGS W D, MOONEY H A. The ecology of arctic and alpine plants [J]. Biological Reviews of the Cambridge Philosophical Society, 1968, 43(4): 481-529. DOI: 10.1111/j.1469-185x.1968.tb00968.x
[37] ROSENFEILD M F, MULLER S C, OVERBECK G E, et al. Short gradient, but distinct plant strategies: The CSR scheme applied to subtropical forests [J]. Journal of Vegetation Science, 2019, 30(5): 984-993. DOI: 10.1111/jvs.12787
[38] 柏祥, 陈开宁, 黄蔚, 等. 黄菖蒲和美人蕉对水深梯度的响应差异 [J]. 生态学杂志, 2011, 30(3): 464-470. [BAI Xiang, CHEN Kaining, HUANG Wei, et al. Differential response of Iris pseudacorus and Canna indica to water depth gradient [J]. Chinese Journal of Ecology, 2011, 30(3): 464-470] DOI: 10.13292/j.1000-4890.2011.0068
[39] 潘红丽, 李迈和, 蔡小虎, 等. 海拔梯度上的植物生长与生理生态特性 [J]. 生态环境学报, 2019, 18(2): 722-730. [PAN Hongli, LI Maihe, CAI Xiaohu, et al. Response of growth and ecophsiology of plants to altitude [J]. Ecology and Environmental Sciences, 2019, 18(2): 722-730] DOI: 10.16258/j.cnki.1674-5906.2009.02.036
[40] DE PAULA L F A, NEGREIROS D, AZEVEDO L O, et al. Functional ecology as a missing link for conservation of a resource-limited flora in the Atlantic forest [J]. Biodiversity and Conservation, 2015, 24: 2239-2253. DOI: 10.1007/s10531-015-0904-x
[41] ECKE F, HELLSTEN S, KOHLER J, et al. The response of hydrophyte growth forms and plant strategies to river restoration [J]. Hydrobiologia, 2016, 769: 41-54. DOI: 10.1007/s10750-015-2605-6
[42] 方耀成. 桂林岩溶石山常绿落叶混交林植物功能性状的空间变异及其与环境的尺度关联性研究 [D]. 桂林: 广西师范大学, 2022: 41-42. [FANG Yaocheng. Spatial variation of plant functional traits and its correlation with environment at different spatial scales in Karst mixed evergreen and deciduous forests, Guilin, China [D]. Guilin: Guangxi Normal University, 2022: 41-42] DOI: 10.27036/d.cnki.ggxsu.2022.000204
[43] ZELNIK I, CARNI A. Distribution of plant communities, ecological strategy types and diversity along a moisture gradient [J]. Community Ecology, 2008, 9(1): 1-9. DOI: 10.1163/156856101317048662
[44] GASTON K J. Global patterns in biodiversity [J]. Nature, 2000, 405: 220-227.DOI: 10.1038/35012228
[45] OLIVEIRA-FILHO A T, BUDKE J C, JARENKO J A, et al. Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests [J]. Journal of Plant Ecology, 2015, 8(3): 242-260. DOI: 10.1093/jpe/rtt058
[46] ROSENFIELD M F, MULLER S C, OVERBECK G E, et al. Short gradient, but distinct plant strategies: The CSR scheme applied to subtropical forests [J]. Journal of Vegetation Science, 2019, 30(5): 984-993. DOI: 10.1111/jvs.12787
[47] GABERSCIK A, KREK J L, ZELNIK I. Habitat diversity along a hydrological gradient in a complex wetland results in high plant species diversity [J]. Ecological Engineering, 2018, 118: 84-92. DOI: 10.1016/j.ecoleng.2018.04.017
[48] BRICCA A, MUSCIANO M D, FERRARA A, et al. Community assembly along climatic gradient: Contrasting pattern between-and within-species [J]. Perspectives in Plant Ecology, Evolution and Systematics, 2022, 56: 125675. DOI: 10.1016/j.ppees.2022.125675
[49] GUPPONI L. Intraspecific variation in functional strategy and leaf shape of Campanula elatinoides reveals adaptation to climate [J]. Flora, 2020, 268: 151605. DOI: 10.1016/j.flora.2020.151605
[50] PFAFF M C, HIEBENTHAL C, MOLIS M, et al. Patterns of diversity along experimental gradients of disturbance and nutrient supply-the confounding assumptions of the Intermediate Disturbance Hypothesis [J]. African Journal of Marine Science, 2010, 32(1): 127-135. DOI: 10.2989/18142321003714856
[51] CONNEL J H. Diversity in tropical rain forests and coral reefs [J]. Science, 1978, 199(4335): 1302-1310. DOI: 10.1126/science.199.4335.1302
[52] GRIME J P. Competitive exclusion in herbaceous vegetation [J]. Nature,1973, 242: 344-347.