[1]李同录,袁思凡,徐家隆,等.降雨引起的两类不同浅层滑坡稳定性的计算模型——与“浅层黄土滑坡易发性评价:以晋西黄土区蔡家川农地小流域为例”一文商榷[J].山地学报,2023,(6):916-925.[doi:10.16089/j.cnki.1008-2786.000797]
 LI Tonglu,YUAN Sifan,XU Jialong,et al.Two Different Types of Models for Stability Assessment of Rainfall Triggered Shallow Landslides——Discuss with the paper Risk Assessment of Shallow Loess Landslides[J].Mountain Research,2023,(6):916-925.[doi:10.16089/j.cnki.1008-2786.000797]
点击复制

降雨引起的两类不同浅层滑坡稳定性的计算模型——与“浅层黄土滑坡易发性评价:以晋西黄土区蔡家川农地小流域为例”一文商榷
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第6期
页码:
916-925
栏目:
山地灾害
出版日期:
2024-02-05

文章信息/Info

Title:
Two Different Types of Models for Stability Assessment of Rainfall Triggered Shallow Landslides——Discuss with the paper Risk Assessment of Shallow Loess Landslides
文章编号:
1008-2786-(2023)6-916-10
作者:
李同录1袁思凡1徐家隆2胡向阳3李 萍1
(1. 长安大学 a.地质工程与测绘学院, 西安 710054; b.黄土高原水循环与地质环境教育部野外科学观测研究站, 甘肃 正宁 745300; 2. 陕西省水土保持生态环境监测中心, 西安 710199; 3. 中国电建集团西北勘测设计研究院有限公司, 西安 710065)
Author(s):
LI Tonglu1 YUAN Sifan1 XU Jialong2 HU Xiangyang3 LI Ping1
(1. a. School of Geological Engineering and Geomatics, Xi’an, 710054; b. Observation and Research Station of Water Cycle and Geological Environment for the Chinese Loess Plateau, Ministry of Education, Zhengning, Gansu 745399, Chang’an University, China; 2. Monitoring Center of Shaanxi Province for Water-Soil Conservation and Ecological Environment, Xi’an, 710199, China; 3. PowerChina Northwest Engineering Corporation Limited, Xi’an, 710065, China)
关键词:
黄土 降雨 浅层滑坡 SHALSTAB模型 SINMAP模型 Green-Ampt模型
Keywords:
loess rainfall shallow landslide SHALSTAB model SINMAP model Green-Ampt model
分类号:
P642
DOI:
10.16089/j.cnki.1008-2786.000797
文献标志码:
A
摘要:
在“浅层黄土滑坡易发性评价:以晋西黄土区蔡家川农地小流域为例”一文中,采用SHALSTAB模型评价降雨引起的黄土斜坡浅层滑移稳定性。该模型是将降雨引起的斜坡水文模型和无限边坡稳定性评价模型结合,便于在MAPGIS中提取地形要素,进行区域性斜坡稳定性评价。模型假定基岩与松散层界面是滑动面,降雨在松散层中形成地下水,并平行基岩面向坡下流动,且为稳定流,排泄量与其上游汇水区的降雨量均衡。可以看出,SHALSTAB模型不适用于黄土斜坡。黄土为厚层非饱和土,斜坡中不存在类似于基岩面的隔水界面,也不会形成平行坡面的地下水流。降雨主要是向下入渗在黄土中形成一个湿润带,湿润带中的水不是潜水,而是毛细悬挂水,其中的孔隙水压力为接近0的一个负值,不存在SHALSTAB模型中的正孔隙水压力,因此在选用模型时,必须仔细甄别其适用条件。
Abstract:
In the article Risk Assessment of Shallow Loess Landslides: Taking a Small Watershed of Caijiachuan Farmland in the Loess Region of Western Shanxi of China as an Example, a SHALSTAB model was used to evaluate the stability of shallow loess landslides triggered by rainfalls. This model combines a rainfall-induced slope hydrological model with an infinite slope stability model, which facilitates the extraction of terrain features in MAPGIS for regional slope stability assessment. In the model it theoretically assumes that the interface between underlying bedrock and loose detritus is a sliding surface; rainfall turns into groundwater in loose material, flowing downslope parallel to the bedrock as an assumed steady flow, with discharge equalized to the rainfall in its upstream. It can be seen that the SHALSTAB model is not suitable for loess slopes. Loess is a thick, unsaturated soil and there is no impermeable interface similar to a bedrock surface in a slope, nor does it drain underground water parallel to a slope surface. Actually, in a loess slope, rainfall mainly infiltrates downward and forms a wet zone in the profile. In the wet zone, the water is capillary suspended rather than phreatic water, and the pore water pressure is a negative value close to zero. There is no positive pore water pressure on the failure surface in loess slope as it is supposed in SHALSTAB model. Therefore, when selecting a model, it is necessary to carefully consider its applicable conditions.

参考文献/References:

[1] MONTGOMERY D R, DIETRICH W E. A physically based model for the topographic control on shallow landsliding [J]. Water Resources Research, 1994, 30(4): 1153-1171. DOI: 10.1029/93WR02979
[2] PACK R T, TARBOTON D G, GOODWIN C N, et al. SINMAP: A stability index approach to terrain stability hazard mapping, User’s manual [M]. Tarboton: Utah State University, 1999: 1-65.
[3] BAUM R L, SAVAGE W Z, GODT J W. TRIGRS: A fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis [M]. Version2.0. Reston, VA: US Geological Survey, 2008: 1-75.
[4] MONTGOMERY D R, DIETRICH W E. Channel initialization and the problem of landscape scale [J]. Science, 1992, 255: 826-830.
[5] MONTGOMERY D R, SULLIVAN K, GREENBERG H M. Regional test of a model for shallow landsliding [J]. Hydrological Processes, 1998, 12: 943-955. DOI: 10.1002/(SICI)1099-1085(199805)12:6<943::AID-HYP664>3.0.CO; 2-Z
[6] 康超, 谌文武, 张帆宇, 等. 确定性模型在黄土沟壑区斜坡稳定性预测中的应用[J]. 岩土力学, 2011, 32(1): 207-260. [KANG Chao, CHEN Wenwu, ZHANG Fanyu, et al. Application of deterministic model to analyzing stability of hillslope of loess gully area [J]. Rock and Soil Mechanics, 2011, 32(1): 207-260] DOI: 10.16285/j.rsm.2011.01.009
[7] 同霄, 彭建兵, 朱兴华, 等. 降雨作用下黄土浅层滑坡的危险性分析[J]. 水土保持通报, 2016, 36(3): 110-113. [TONG Xiao, PENG Jianbing, ZHU Xinghua, et al. Risk analysis of loess shallow landslides under different rainfall conditions [J]. Bulletin of Soil and Water Conservation, 2016, 36(3): 110-113] DOI: 10.13961/j.cnki.stbctb.2016.03.020
[8] 周琪龙. 黄土沟壑区土壤侵蚀与浅层滑坡相关关系研究[D]. 兰州: 兰州大学, 2013: 38-40. [ZHOU Qilong. Study on relationship between soil erosion and shallow landslides in the loess gully region [D]. Lanzhou: Lanzhou University, 2013: 38-40]
[9] 庄建琦, 彭建兵, 张利勇. 不同降雨条件下黄土高原浅层滑坡危险性预测评价[J]. 吉林大学学报(地球科学版), 2013, 43(3): 867-876. [ZHUANG Jianqi, PENG Jianbing, ZHANG Liyong. Risk assessment and prediction of the shallow landslide at different precipitation in Loess Plateau [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 867-876] DOI: 10.13278/j.cnki.jjuese.2013.03.039
[10] 高波, 王晓勇. 基于SINMAP模型的延安市滑坡危险性区划[J]. 水土保持通报, 2019, 39(3): 211-216. [GAO Bo, WANG Xiaoyong. Risk zoning of landslide based on SINMAP model in Yan’an city [J]. Bulletin of Soil and Water Conservation, 2019, 39(3): 211-216] DOI: 10.13961/j.cnki.stbctb.2019.03.035
[11] 李艳杰, 唐亚明, 邓亚虹, 等. 降雨型浅层黄土滑坡危险性评价与区划——以山西柳林县为例[J].中国地质灾害与防治学报, 2022, 33(2): 105-114. [LI Yanjie, TANG Yaming, DENG Yahong, et al. Hazard assessment of shallow loess landslides induced by rainfall: A case study of Liulin county of Shanxi province [J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 105-114] DOI: 10.16031/j.cnki.issn.1003-8035.2022.02-13
[12] 刘凡, 邓亚虹, 慕焕东, 等. 基于最大熵-无限边坡模型的降雨诱发浅层黄土滑坡稳定性评价方法研究[J]. 水文地质工程地质, 2023, 50(5): 146-158. [LIU Fan, DENG Yahong, MU Huandong, et al. A study of the stability evaluation method of rainfall-induced shallow loess landslides based on the Maxent-Sinmap slope model [J]. Hydrogeology and Engineering Geology, 2023, 50(5): 146-158] DOI: 10.16030/j.cnki.issn.1000-3665.202207050
[13] FENG Lanqian, GUO Mingming, WANG Wenlong, et al. Comparative analysis of machine learning methods and a physical model for shallow landslide risk modeling [J]. Sustainability, 2023, 15(6): 1-18. DOI: 10.3390/su15010006
[14] 程斌. 晋西黄土高原城镇区域斜坡稳定性评价——以吕粱市临县城区为例[D]. 西安: 西北大学, 2018: 45-62. [CHENG Bin. Stability evaluation of urban slopes in Loess Plateau of west Shanxi province—taking the urban of Linxian county as an example [D]. Xi’an: Northwest University, 2018: 45-62 ]
[15] 杨文璐. 黄土丘陵区滑坡空间分布规律及稳定性评价——以志丹县为例[D]. 西安: 西北大学, 2019: 41-62. [YANG Wenlu. The spatial distribution and stability evaluation of landslides in loess hilly region——taking Zhidan county as an example [D]. Xi’an: Northwest University, 2019: 41-62]
[16] 冯兰茜. 黄土塬区沟坡稳定性评估及失稳机制研究—以董志塬为例[D]. 北京: 中国科学院大学, 2023: 21-40. [FENG Lanqian. Study on stability assessment and failure mechanism of gully slope in loess tableland: A case study of Dongzhiyuan [D]. Beijing: University of Chinese Academy of Sciences, 2023: 21-40]
[17] 康超. 确定性模型在黄土沟壑区斜坡稳定性预测中的应用[D]. 兰州: 兰州大学, 2010: 26-34. [KANG Chao. Application of deterministic model in analysis and prediction of stability in loess gully area [D]. Lanzhou: Lanzhou University, 2010: 26-34]
[18] ZHUANG Jianqi, PENG Jianbing, WANG Gonghui, et al. Prediction of rainfall-induced shallow landslides in the Loess Plateau, Yan’an, China, using the TRIGRS model [J]. Earth Surface Processes and Landforms, 2017, 42(6): 915-927. DOI: 10.1002/esp.4050
[19] 刘银鹏, 李同录, 胡向阳, 等. 陇东陕甘边界降雨水毁灾情调查与启示[J]. 中国地质灾害与防治学报, 2022, 33(3): 77-83. [LIU Yinpeng, LI Tonglu, HU Xiangyang, et al. Investigation of water induced damages triggered by rainfall in east Gansu and the implications [J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 77-83] DOI: 10.16031/j.cnki.issn.1003-8035.2022.03-09
[20] LI Ping, LI Tonglu, VANAPALLI S K. Influence of environmental factors on the wetting front depth: A case study in the Loess Plateau [J]. Engineering Geology, 2016, 214: 1-10. DOI: 10.1016/j.enggeo.2016.09.008
[21] 李同录, 习羽, 侯晓坤. 水致黄土深层滑坡灾变机理[J]. 工程地质学报, 2018, 26(5): 1114-1120. [LI Tonglu, XI Yu, HOU Xiaokun. Mechanism of surface water infiltration induced deep loess landslide [J]. Journal of Engineering Geology, 2018, 26(5): 1114-1120] DOI: 10.13544/j.cnki.jeg.2018176
[22] ZHANG Changliang, LI Tonglu, LI Ping. Rainfall infiltration in Chinese loess by in situ observation [J]. Journal of Hydrologic Engineering, 2014, 19(9): 06014002-1-3. DOI: 10.1061/(ASCE)HE.1943-5584.0001015
[23] GREEN W H, AMPT G A. Studies on soil physics: I The flow of air and water through soils [J]. International Journal of Nonlinear Sciences, 1911, 4(7): 1-24. DOI: 10.1017/s0021859600001441
[24] RICHARDS L A. Capillary conduction of liquids through porous mediums [J]. Journal of Physics, 1931, 1: 318-333. DOI: 10.1063/1.1745010
[25] FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils [M]. New York: John Wiley and Sons, 1993: 38-63. DOI: 10.1002/9780470172759
[26] MIYAZAKI T. Water flow in soils [M]. 2nd ed. London, New York: Taylor & Francis, 2006: 21-85
[27] WANG Genlong, LI Tonglu, XING Xianli, et al. Research on loess flow-slides induced by rainfall in July 2013 in Yan’an, NW China [J]. Environmental Earth Sciences, 2015, 73(12): 7933-7944. DOI: 10.1007/s12665-014-3951-9

相似文献/References:

[1]汪阳春,柴宗新,刘淑珍,等.横断山地区的黄土及意义[J].山地学报,1999,(04):300.
[2]马东涛,祁龙,邓晓峰.甘肃环县东山黄土泥流综合治理[J].山地学报,2000,(03):217.
[3]王春,汤国安,张婷,等.在降雨侵蚀中黄土地面坡度变化的高分辨研究[J].山地学报,2005,(05):589.
[4]何思明,白秀强,欧阳朝军,等.四川省茂县叠溪镇新磨村特大滑坡应急科学调查[J].山地学报,2017,(04):598.[doi:10.16089/j.cnki.1008-2786.000258]
 HE Siming,BAI Xiuqiang,OUYANG Chaojun,et al.On the Survey of Giant Landslide at Xinmo Village of Diexi Town, Maoxian Country, Sichuan Province, China[J].Mountain Research,2017,(6):598.[doi:10.16089/j.cnki.1008-2786.000258]
[5]徐 晶,徐征和,李 伟,等.济南市1970-2016年降雨侵蚀力时空变化[J].山地学报,2018,(03):391.[doi:10.16089/j.cnki.1008-2786.000335]
 XU Jing,XU Zhenghe,LI Wei,et al.Temporal and Spatial Changes of Rainfall Erosivity during 1970-2016 in Jinan City, China[J].Mountain Research,2018,(6):391.[doi:10.16089/j.cnki.1008-2786.000335]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-12- 05; 改回日期(Accepted date): 2023-12-16
基金项目(Foundation item): 国家重点研发计划(2021YFE0111900); 陕西省水土保持生态环境监测中心(2023SBJC-01); 中国电建集团西北勘测设计研究院有限公司资助项目(XBY-PTKJ-2022-8)。[National Key R&D Program of China(2021YFE0111900); Project Founded by Shaan Xi Province Soil and Water Conservation Environment Monitoring Center(2023SBJC-01); Project Founded by Power China Northwest Engineering Corporation Limited(XBY-PTKJ-2022-8)]
作者简介(Biography): 李同录(1965-), 男,甘肃正宁人,博士,教授,主要研究方向:黄土工程性质,地质灾害防治等方向研究。[LI Tonglu(1965-), male, born in Zhengning, Gansu province, Ph.D., professor, research on loess engineering properties, geo-disaster mitigation] E-mail: dcdgx08@chd.edu.cn
更新日期/Last Update: 2023-11-30