[1]陈 露,唐家良,王艳强*,等.川中丘陵区极端气候演变及其对紫色土坡耕地作物生产的影响[J].山地学报,2025,(2):167-184.[doi:10.16089/j.cnki.1008-2786.000884]
 CHEN Lu,TANG Jialiang,WANG Yanqiang*,et al.Extreme Weather Trajectory over Recent Decades and Associated Impacts on Crop Production in Purple Soil Sloping Farmland in the Hilly Areas of Central Sichuan, China[J].Mountain Research,2025,(2):167-184.[doi:10.16089/j.cnki.1008-2786.000884]
点击复制

川中丘陵区极端气候演变及其对紫色土坡耕地作物生产的影响()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第2期
页码:
167-184
栏目:
山地环境
出版日期:
2025-06-25

文章信息/Info

Title:
Extreme Weather Trajectory over Recent Decades and Associated Impacts on Crop Production in Purple Soil Sloping Farmland in the Hilly Areas of Central Sichuan, China
文章编号:
1008-2786-(2025)2-167-18
作者:
陈 露12唐家良1王艳强1*高美荣1崔俊芳1朱 波1
(1. 中国科学院、水利部成都山地灾害与环境研究所 山地表生过程与生态调控重点实验室,成都 610213; 2. 中国科学院大学,北京 100049)
Author(s):
CHEN Lu12 TANG Jialiang1 WANG Yanqiang1* GAO Meirong1 CUI Junfang1 ZHU Bo1
(1. Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Resources, Chengdu 610213, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
极端气候 作物生产 坡耕地 紫色土 广义加性模型
Keywords:
extreme weather crop production sloping farmland purple soil Generalized Additive Models
分类号:
S166
DOI:
10.16089/j.cnki.1008-2786.000884
文献标志码:
A
摘要:
全球变暖背景下极端气候事件频发,对川中丘陵区农业可持续生产构成严峻威胁。前期研究多基于低空间分辨率的NDVI数据表征植被动态,难以精准解析极端气候事件对作物生长的微观影响机制。本研究以气候敏感型——川中丘陵区紫色土坡耕地为研究对象,基于区内定位试验站的气象数据序列(1960—2022年)及主要作物冬小麦/夏玉米生产数据(2005—2022年),采用ETCCDI(Expert Team on Climate Change Detection and Indices)构建的极端气候指数体系,运用Mann-Kendall趋势检验及广义加性模型(Generalized Additive Models, GAMs),揭示20个极端气候指数演变特征及其对作物生产力的相对影响。结果表明:(1)川中丘陵区气温呈现显著增暖趋势。1960—2022年平均气温整体呈先下降后上升的趋势,其中1990年之后呈上升趋势,1990—2022年气温增暖率为0.20 ℃?(10a)-1。1960—2022年极端气温暖指数呈上升趋势,冷指数基本呈下降趋势,其中热天日数、霜冻日数、日平均温差均呈极显著上升趋势(P<0.01),表明极端高低温事件发生频率与强度同步加剧。(2)年平均降水量变化趋势不显著,波动较大(P>0.05)。连续无雨日数呈极显著上升趋势(P<0.01),而其余极端降水频率类指数及降水强度类指数基本呈不显著的上升趋势,表明区域干旱化风险整体加剧。(3)作物响应存在明显种间差异。冬小麦及夏玉米生产均受连续无雨日数的显著影响,但夏玉米对极端气候指数的响应更为敏感,其中最高气温极大值、最低气温极大值及日平均温差是制约夏玉米产量的主导气温因子(P<0.05); 降水频率指数、年总降水量及湿润天数则是主要极端降水影响因子(P<0.05)。(4)Hurst指数预测显示,未来极端气候事件呈现持久性特征,高温-干旱复合型灾害将成为威胁作物生产的主要风险。本研究提出的作物-气候响应机制,可为丘陵旱作农业区优化种植制度、制定气候适应性管理方案提供定量化决策支持,对保障粮食安全具有重要实践价值。
Abstract:
Frequent extreme climate events over recent decades under global warming pose a severe threat to sustainable agricultural production in Central Sichuan of China. Previous studies predominantly utilized low-spatial-resolution NDVI data to characterize vegetation dynamics, making it difficult to precisely decipher the microscale impact mechanisms of extreme climate events on crop growth.
In this study, it investigated a representative agricultural system in climate-sensitive sloping farmland of purple soil in the hilly areas of Central Sichuan, China, utilizing meteorological data series(1960-2022)and production data of major crops(winter wheat/summer maize, 2005-2022)from a local research station-the Yanting Purple Soil Agro-Ecological Experimental Station of the Chinese Academy of Sciences. It employed the extreme climate index system constructed by ETCCDI(Expert Team on Climate Change Detection and Indices), along with Mann-Kendall trend tests and Generalized Additive Models(GAM)to reveal evolution patterns of 20 extreme climate indices and their relative impacts on crop productivity.
(1)The Central Sichuan hilly areas had shaped into a significant warming trend for recent decades. The average temperature from 1960 to 2022 had an overall pattern of initial decrease followed by increase, with a rising trend after 1990 with a warming rate of 0.20 ℃·(10a)-1 during 1990-2022. From 1960 to 2022, extreme warm temperature indices had an upward trend while cold indices generally declined, marked by extremely significant increases in hot days, frost days, and diurnal temperature range(P<0.01), indicating a synchronized intensification in both the frequency and magnitude of extreme high and low temperature events.
(2)Annual average precipitation demonstrated no observable trend but considerable fluctuation(P>0.05). Consecutive rainless days exhibited a highly significant increasing trend(P<0.01), while other extreme precipitation frequency/intensity indices generally showed non-significant upward trends, suggesting an overall intensification of regional drought risk.
(3)There were distinct interspecies differences in crop responses to climate changes. While both winter wheat and summer maize production were significantly affected by consecutive dry days, summer maize exhibited greater sensitivity to extreme climate indices. Extreme temperature factors(maximum/minimum temperature extremes, diurnal temperature range)were dominant temperature factors constraining summer maize yield(P<0.05), while precipitation frequency indicators, annual total precipitation, and heavy precipitation days constituted primary drivers of precipitation impacts(P<0.05).
(4)According to Hurst exponent predictions, it indicated there would be persistent occurrences of extreme climate events in future, with high-temperature-drought compound disasters emerging as the main risk threat to crop production.
The crop-climate response framework proposed in this study provides quantitative decision-support for optimizing planting systems and developing climate-adaptive management schemes in hilly dryland agricultural areas, offering appreciable practical value for ensuring food security.

参考文献/References:

[1] YAN D H, WU D, HUANG R, et al. Drought evolution characteristics and precipitation intensity changes during alternating dry-wet changes in the Huang-Huai-Hai River basin [J]. Hydrology and Earth System Sciences, 2013, 17(7): 2859-2871. DOI: 10.5194/hess-17-2859-2013
[2] ZOU Xingyun, PENG Xinyu, ZHAO Xinxin, et al. The impact of extreme weather events on water quality: International evidence [J]. Natural Hazards, 2023, 115(1): 1-21. DOI: 10.1007/s11069-022-05548-9
[3] SHI Wenjiao, WANG Minglei, LIU Yiting. Crop yield and production responses to climate disasters in China [J]. Science of the Total Environment, 2020, 750: 141147. DOI: 10.1016/j.scitotenv.2020.141147
[4] 夏军, 陈进, 佘敦先. 2022年长江流域极端干旱事件及其影响与对策[J]. 水利学报, 2022, 53(10): 1143-1153. [XIA Jun, CHEN Jin, SHE Dunxian. Impacts and countermeasures of extreme drought in the Yangtze River Basin in 2022 [J]. Journal of Hydraulic Engineering, 2022, 53(10): 1143-1153] DOI: 10.13243/j.cnki.slxb.20220730
[5] 崔嵩, 贾朝阳, 郭亮, 等. 不同海拔梯度下极端气候事件对松花江流域植被NPP的影响[J]. 环境科学, 2024, 45(1): 275-286. [CUI Song, JIA Zhaoyang, GUO Liang, et al. Impacts of extreme climate events at different altitudinal gradients on vegetation NPP in Songhua River Basin [J]. Environmental Science, 2024, 45(1): 275-286] DOI: 10.13227/j.hjkx.202301118
[6] REN Zikang, ZHAO Huarong, MU Xinzhi, et al. Spatiotemporal variations of extreme weather events and climate drivers in the Three Gorges Reservoir area and its surrounding regions from 1960 to 2020 [J]. Atmospheric Research, 2024, 304: 107379. DOI: 10.1016/j.atmosres.2024.107379
[7] WANG Ping, CHENG Qingping, JIN Hanyu. Divergent vegetation variation and the response to extreme climate events in the National Nature Reserves in Southwest China, 1961-2019 [J]. Ecological Indicators, 2023, 150: 110247. DOI: 10.1016/j.ecolind.2023.110247
[8] 陈超男, 王丽园, 朱文博, 等. 秦巴山地极端气候变化特征及其对植被动态的影响[J]. 水土保持学报, 2024, 38(3): 276-287. [CHEN Chaonan, WANG Liyuan, ZHU Wenbo, et al. Characteristics of extreme climate change in the Qinling-Daba mountains and its impact on vegetation dynamics [J]. Journal of Soil and Water Conservation, 2024, 38(3): 276-287] DOI: 10.13870/j.cnki.stbcxb.2024.03.023
[9] 杨阳, 赵娜, 岳天祥. 1980—2018年中国极端高温事件时空格局演变特征[J]. 地理科学, 2022, 42(3): 536-547. [YANG Yang, ZHAO Na, YUE Tianxiang, et al. Spatio-temporal variations of extreme high temperature event in China from 1980 to 2018 [J]. Scientia Geographica Sinica, 2022, 42(3): 536-547] DOI: 10.13249/j.cnki.sgs.2022.03.018
[10] FILAHI S, TANARHTE M, MOUHIR L, et al. Trends in indices of daily temperature and precipitations extremes in Morocco [J]. Theoretical and Applied Climatology, 2016, 124(3-4): 959-972. DOI: 10.1007/s00704-015-1472-4
[11] 倪铭, 张曦月, 姜超, 等. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. [NI Ming, ZHANG Xiyue, JIANG Chao, et al. Responses of vegetation to extreme climate events in southwestern China [J]. Chinese Journal of Plant Ecology, 2021, 45(6): 626-640] DOI: 10.17521/cjpe.2021.0042
[12] GUO Shibo, GUO Erjing, ZHANG Zhentao, et al. Impacts of mean climate and extreme climate indices on soybean yield and yield components in Northeast China [J]. Science of the Total Environment, 2022, 838(3): 156284. DOI: 10.1016/j.scitotenv.2022.156284
[13] 杨扬, 常伟, 张兴东. 新疆极端气候时空变化及其与棉花生产关联研究[J]. 中国农业资源与区划, 2024, 45(12): 60-74. [YANG Yang, CHANG Wei, ZHANG Xingdong, et al. Spatiotemporal variation of extreme climate and its correlation with cotton production in Xinjiang [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2024, 45(12): 60-74] DOI: 10.7621/cjarrp.1005-9121.20241206
[14] 中国科学院成都分院土壤研究室. 中国紫色土(上篇)[M]. 北京: 科学出版社, 1991: 1. [Soil Laboratory, Chengdu Branch of Chinese Academy of Sciences. Purple soil in China(1)[M]. Beijing: Science Press, 1991: 1]
[15] 张建华, 赵燮京, 林超文, 等. 川中丘陵坡耕地水土保持与农业生产的发展[J]. 水土保持学报, 2001, 15(1): 81-84. [ZHANG Jianhua, ZHAO Xiejing, LIN Chaowen, et al. Soil and water conservation and agriculture production development of sloping upland in the hilly area of central Sichuan [J]. Journal of Soil and Water Conservation, 2001, 15(1): 81-84] DOI: 10.3321/j.issn:1009-2242.2001.01.022
[16] ZHAO Pei, TANG Xiangyu, ZHAO Peng, et al. Tracing water flow from sloping farmland to streams using oxygen-18 isotope to study a small agricultural catchment in southwest China [J]. Soil and Tillage Research, 2013, 134: 180-194. DOI: 10.1016/j.still.2013.08.005
[17] 朱波, 况福虹, 高美荣, 等. 土层厚度对紫色土坡地生产力的影响[J]. 山地学报, 2009, 27(6): 735-739. [ZHU Bo, KUANG Fuhong, GAO Meirong, et al. Effects of soil thickness on productivity of sloping cropland of purple soil [J]. Mountain Research, 2009, 27(6): 735-739] DOI: 10.16089/j.cnki.1008-2786.2009.06.016
[18] QIN Nianxiu, WANG Junneng, YANG Guishan, et al. Spatial and temporal variations of extreme precipitation and temperature events for the Southwest China in 1960-2009 [J]. Geoenvironmental Disasters, 2015, 2(1): 1-14. DOI: 10.1186/s40677-015-0014-9
[19] 何毓蓉. 中国紫色土(下篇)[M]. 北京: 科学出版社, 2003: 1. [HE Yurong. Purple soil in China(2)[M]. Beijing: Science Press, 2003: 1]
[20] 赵静. 三峡库区1988~2007年植被覆盖动态变化研究 [D]. 武汉: 华中农业大学, 2008: 47. [ZHAO Jing. Study on dynamic changes of vegetation cover of the Three Gorges Reservoir area in 1988~2007 [D]. Wuhan: Huazhong Agricultural University, 2008: 47]
[21] 张信宝, 朱波, 张建辉, 等. 地下地膜截水墙—一种新的节水农业技术[J]. 山地学报, 1999, 17(2): 115-118. [ZHANG Xinbao, ZHU Bo, ZHANG Jianhui, et al. Underground plastic sheet wall-a new water-saving agricultural technique [J]. Mountain Research, 1999, 17(2): 115-118] DOI: 10.3969/j.issn.1008-2786.1999.02.005
[22] KENDALL M G. Rank correlation methods [M]. London: Griffin, 1970: 245-259.
[23] 魏凤英. 现代气候统计诊断与预测技术(第二版)[M]. 北京: 气象出版社, 2007: 101-102. [WEI Fengying. Modern climate statistical diagnosis and prediction technology(Ⅱ)[M]. Beijing: China Meteorological Press, 2007: 101-102]
[24] HASTIE T J, TIBSHIRANI R J. Generalized additive models monographs on statistics and applied probability [M]. London: Chapman and Hall, 1990, 43: 335.
[25] DZIAK J J, COFFMAN D L, LANZA S T, et al. Sensitivity and specificity of information criteria [J]. Briefings in Bioinformatics, 2019, 21(2): 553-565. DOI: 10.1093/bib/bbz016
[26] 王桂钢, 周可法, 孙莉, 等. 近10a 新疆地区植被动态与R/S分析[J]. 遥感技术与应用, 2010, 25(1): 84-90. [WANG Guigan, ZHOU Kefa, SUN Li, et al. Study on the vegetation dynamic change and R/S analysis in the past ten years in Xinjiang [J]. Remote Sensing Technology and Application, 2010, 25(1): 84-90. DOI: 10.11873/J.ISSN.1004-0323.2010.1.84
[27] LI Linchao, YAO Ning, LI Yi, et al. Future projections of extreme temperature events in different sub-regions of China [J]. Atmospheric Research, 2019, 217: 150-164. DOI: 10.1016/j.atmosres.2018.10.019
[28] WANG Liyuan, CHEN Shifa, ZHU Wenbo, et al. Spatiotemporal variations of extreme precipitation and its potential driving factors in China's North-South Transition Zone during 1960-2017 [J]. Atmospheric Research, 2021, 252(4): 105429. DOI: 10.1016/j.atmosres.2020.105429
[29] DING Zhiyong, WANG Yuyang, LU Ruijie. An analysis of changes in temperature extremes in the Three River Headwaters region of the Tibetan Plateau during 1961-2016 [J]. Atmospheric Research, 2018, 209: 103-114. DOI: 10.1016/j.atmosres.2018.04.003
[30] 刘子堂, 李谢辉, 杨静坤. 四川盆地极端降水事件时空变化特征及未来趋势分析[J]. 成都信息工程大学学报, 2022, 37(4): 456-463. [LIU Zitang, LI Xiehui, YANG Jingkun, et al. Analysis on spatiotemporal change characteristics and future trends of extreme precipitation events in Sichuan Basin [J]. Journal of Chengdu University of Information Technology, 2022, 37(4): 456-463] DOI: 10.16836/j.cnki.jcuit.2022.04.015
[31] ISLAM H M T, ISLAM A R M T, ABULLAH-Al-MAHBUB M, et al. Spatiotemporal changes and modulations of extreme climatic indices in monsoon-dominated climate region linkage with large-scale atmospheric oscillation [J]. Atmospheric Research, 2021, 264: 105840. DOI: 10.1016/j.atmosres.2021.105840
[32] HONG Chicherng, CHANG Taochi, HSU Huanghsiung. Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(7): 3715-3722. DOI: 10.1002/2013JD021394
[33] GAO Tao, WANG Huixia Judy, ZHOU Tianjun. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China [J]. Atmospheric Research, 2017, 197: 379-389. DOI: 10.1016/j.atmosres.2017.07.017
[34] 张弛, 吴绍洪. 西南地区夏季极端降水的水汽来源分析[J]. 自然资源学报, 2021, 36(5): 1186-1194. [ZHANG Chi, WU Shaohong. An analysis on moisture source of extreme precipitation in Southwest China in summer [J]. Journal of Natural Resources, 2021, 36(5): 1186-1194] DOI: 10.31497/zrzyxb.20210508
[35] MENZEL A, FABIAN P. Growing season extended in Europe [J]. Nature, 1999, 397(6721): 659. DOI: 10.1038/17709
[36] WU Lizhou, ZHAO Chengyi, LI Juyan, et al. Impact of extreme climates on land surface phenology in Central Asia [J]. Ecological Indicators, 2023, 146: 109832. DOI: 10.1016/j.ecolind.2022.109832
[37] FENG Xiaolong, LIU Ran, LI Congjuan, et al. Contrasting responses of two C4 desert shrubs to drought but consistent decoupling of photosynthesis and stomatal conductance at high temperature [J]. Environmental and Experimental Botany, 2023, 209: 105295. DOI: 10.1016/j.envexpbot.2023.105295
[38] LI Zhaoxia, HOWELL S H. Heat stress responses and thermotolerance in maize [J]. International Journal of Molecular Sciences, 2021, 22(2): 948. DOI: 10.3390/ijms22020948
[39] NIU Shiduo, DU Xiong, WEI Dejie, et al. Heat stress after pollination reduces kernel number in maize by insufficient assimilates [J]. Frontiers in Genetics, 2021, 12: 728166. DOI: 10.3389/fgene.2021.728166
[40] 朱俐南, 卫海燕, 郭彦龙, 等. 基于熵权物元模型的黄芩适宜生境区划[J]. 水土保持通报, 2015, 35(1): 153-158. [ZHU Linan, WEI Haiyan, GUO Yanlong, et al. Suitable habitat division of Scutellaria Baicalensis georgi based on entropy weight and matter element model [J]. Bulletin of Soil and Water Conservation, 2015, 35(1): 153-158] DOI: 10.13961/j.cnki.stbctb.2015.01.029
[41] XIAO Qianying, DONG Zhixin, HAN Yang, et al. Impact of soil thickness on productivity and nitrate leaching from sloping cropland in the upper Yangtze River Basin [J]. Agriculture, Ecosystems and Environment, 2021, 311(3): 107266. DOI: 10.1016/j.agee.2020.107266
[42] BHAVAN C P, MUNIRAJAPPA R, SURENDRA H S, et al. Effect of rainfall patterns on crop yield in southern dry zone of Karnataka [J]. Environment and Ecology, 2012, 30: 888-891. DOI: 10.5555/20123322833
[43] CHEN Lu, LUO Yong, TANG Jialiang, et al. Determination of optimum solum thickness of sloping cropland for maize plantation in an Entisol based on water use strategy and plant traits [J]. Agricultural Water Management, 2024, 299: 108867. DOI: 10.1016/j.agwat.2024.108867
[44] COHEN I, ZANDALINAS S I, HUCK C, et al. Meta-analysis of drought and heat stress combination impact on crop yield and yield components [J]. Physiologia Plantarum, 2021, 171(1): 66-76. DOI: 10.1111/ppl.13203
[45] NAYLOR D, COLEMAN-DERR D. Drought stress and root-associated bacterial communities [J]. Frontiers in Plant Science, 2018, 9: 2223. DOI: 10.3389/fpls.2017.02223
[46] ZAHRA N, WAHID A, HAFEEZ M B, et al. Grain development in wheat under combined heat and drought stress: Plant responses and management [J]. Environmental and Experimental Botany, 2021, 188(12): 104517. DOI: 10.1016/j.envexpbot.2021.104517
[47] BI Wuxia, WENG Baisha, YAN Denghua, et al. Soil phosphorus loss increases under drought-flood abrupt alternation in summer maize planting area [J]. Agricultural Water Management, 2022, 262: 107426. DOI: 10.1016/j.agwat.2021.107426
[48] NGUYEN L T T, OSANAI Y, ANDERSON I C, et al. Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity [J]. Plant and Soil, 2018, 431(1-2): 371-387. DOI: 10.1007/s11104-018-3774-7

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 09-30; 改回日期(Accepted date): 2025- 04-16
基金项目(Foundation item): 国家重点研发计划(2023YFF0806002); 国家自然科学基金(42371039)。[National Key Research and Development Program of China(2023YFF0806002); National Natural Science Foundation of China(42371039)]
作者简介(Biography): 陈露(1996-),女,甘肃酒泉人,博士研究生,主要研究方向:生态水文观测与模拟。 [CHEN Lu(1996-), female, born in Jiuquan, Gansu Province, Ph.D. candidate, research on observation and simulation of ecohydrology] E-mail: chenlu@imde.ac.cn
*通讯作者(Corresponding author): 王艳强(1980-),男,工程师,重庆酉阳人,主要研究方向:作物形态生理观测。[WANG Yanqiang(1980-), male, engineer, research on crop morphophysiology]E-mail: yanqiang_wang@imde.ac.cn
更新日期/Last Update: 2025-03-30