[1]胡祉昱a,张思盈b,张知菲c,等.生态系统转换时土壤分形维数变化的Meta分析[J].山地学报,2025,(2):195-206.[doi:10.16089/j.cnki.1008-2786.000886]
 HU Zhiyua,ZHANG Siyingb,ZHANG Zhifeic,et al.Meta-Analysis of Soil Fractal Dimension Changes during Ecosystem Conversion[J].Mountain Research,2025,(2):195-206.[doi:10.16089/j.cnki.1008-2786.000886]
点击复制

生态系统转换时土壤分形维数变化的Meta分析()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第2期
页码:
195-206
栏目:
山地环境
出版日期:
2025-06-25

文章信息/Info

Title:
Meta-Analysis of Soil Fractal Dimension Changes during Ecosystem Conversion
文章编号:
1008-2786-(2025)2-195-12
作者:
胡祉昱a 张思盈b 张知菲c 刘忆南b林勇明bd*
(福建农林大学 a. 林学院; b. 菌草与生态学院; c. 国际学院; d. 福建省高校森林生态系统过程与经营重点实验室,福州 350002)
Author(s):
HU Zhiyua ZHANG Siyingb ZHANG Zhifeic LIU Yinanb LIN Yongmingbd*
(a. College of Forestry; b. College of Juncao Science and Ecology; c. International College; d. Key Laboratory of Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
关键词:
生态系统演变 土壤分形维数 Meta分析 降水量
Keywords:
ecosystem transition soil fractal dimension Meta-analysis precipitation
分类号:
K903
DOI:
10.16089/j.cnki.1008-2786.000886
文献标志码:
A
摘要:
土壤颗粒分形维数(Soil Fractal Dimension, SFD)是定量评估土壤质量演变的综合性指标。生态系统类型、气候梯度等地理要素对土壤分形特征具有显著的塑造作用。前期对土壤分形维数的研究主要针对小尺度区域,多聚焦于单一地理要素(如降水或地形)的局部影响,大尺度区域背景下多种地理因素对土壤分形维数的影响效应研究不足。本研究整合多源文献数据,采用Meta-analysis(荟萃分析)方法,在宏观尺度上分析生态系统更替时土壤分形维数的变化规律、驱动因子及其对降水量、温度的响应机制。结果表明:(1)生态系统演替显著提升土壤分形维数数值(DS)。低覆盖草地(含裸地)向灌丛、森林及较高覆盖草地转型时,分形维数呈现显著增大趋势(P<0.05),其变化率(Rate of change in SFD, ΔDS)排序由大到小依次为较高覆盖草地(ΔDS=5.82%)、灌丛(ΔDS=4.59%)、森林(ΔDS=4.47%)、农田(ΔDS=2.10%)。表明植被恢复对土壤分形维数的提升作用具有显著生态系统依赖性。(2)降水梯度调控效应明显。在湿润区(年均降水量,Mean Annual Precipitation, ρA>400 mm),低覆盖草地转为森林、灌丛时ΔDS达3.94%与2.17%; 在干旱半干旱区(ρA≤400 mm),转为较高覆盖草地、灌丛和森林时ΔDS分别为9.13%、7.02%和5.53%。降水阈值(ρA=400 mm)效应揭示了水分条件对土壤结构改良功效。(3)地形分异的塑造作用显著。除沙漠外,向森林转换时DS值普遍提升; 在高原、沙漠区,向灌丛转换时的土壤改良效应最为显著(ΔDS>7%); 在丘陵区,向农田转换时则出现唯一的显著负响应(ΔDS=-2.00%),凸显人类耕作对土壤结构的特殊影响。(4)气候带调控作用突出。温带及中温带林灌草系统、亚热带林灌系统的DS值增幅均超过6%。年降水量可解释12%的SFD变异(决定系数R2=0.12, P<0.001),其贡献率远超地形因子(R2=0.009)和温度因子(R2=0.005),证实降水量是其核心驱动因子。本研究创新性建立了全国尺度生态系统转换-土壤分形维数的响应模式,加深了对生态系统转变时土壤结构稳定性和发展演替阶段的认识。
Abstract:
Soil quality could be quantitatively evaluated by soil fractal dimension(SFD), which is a comprehensive index deeply shaped by geographic factors such as ecosystem type and climatic gradient. Former scientific researches on SFD mostly were conducted on the basis of microscale areas, emphasizing localized effects of single geographic factors(e.g., precipitation or topography), but they neglected the joint impacts of multiple geographic factors on SFD in large-scale regional context.
In this study, it integrated multi-source literature data and used Meta-analysis approach to analyze SFD change, their driving factors and mechanisms of responses to precipitation and temperature during ecosystem conversation at a macroscale.
(1)It found that ecosystem succession significantly increased SFD values(hereafter denoted as DS). A notable upward trend in DS were observed during transitions from low-coverage grassland(including bare land)to shrubland, forest, and high-coverage grassland(P<0.05), with the magnitude of increase(Rate of change in SFD, ΔDS)ranked in descending order as high-coverage grassland(ΔDS=5.82%), shrubland(ΔDS=4.59%), forest(ΔDS=4.47%), farmland(ΔDS=2.10%). This highlights the ecosystem-dependent enhancement of SFD by vegetation restoration.
(2)Precipitation gradient had distinct regulatory effects on SFD. In humid zones(Mean Annual Precipitation, ρA>400 mm), the conversion of low-coverage grassland to forest and to shrub had the 3.94% and 2.17% in ΔDS, respectively, while in arid/semi-arid zones(ρA≤400 mm), the conversion to higher-coverage grassland, shrub, and forest had the ΔDS of 9.13%, 7.02% and 5.53%, respectively. The precipitation threshold effect of 400 mm reveals the critical role of moisture in soil structure improvement.
(3)Topographic differentiation had significant shaping effect on SFD. DS significantly increased as low-coverage grasslands converting to forests in all terrains except deserts. In plateau and desert, the conversion to shrub had the highest ΔDS(>7%), marking the greatest soil improvement effect. In hilly areas, the conversion to farmland had the only significant negative ΔDS(-2.00%), signifying the specific impact of human cultivation on soil structure.
(4)Climate zone also regulated SFDs. Forest-shrub-grass systems in temperate and mid-temperate zones, as well as subtropical forest-shrub systems, exhibited ΔDS exceeding 6%. Annual precipitation explained 12% of the variance in SFDs(R2=0.12, P<0.001), surpassing the contributions of topographic(R2=0.009)and temperature factors(R2=0.005), confirming precipitation as the primary driver.
This study innovatively established a national scale response model linking ecosystem transitions to soil fractal dimension, deepening understanding of soil structural stability and successional stages during ecosystem transformations.

参考文献/References:

[1] LI Songyang, GAO Ruoyun, HUANG Maowei, et al. Multifractal features of particle-size distribution and their relationships with soil erosion resistance under different vegetation types in debris flow basin [J]. Frontiers in Earth Science, 2022, 10: 927862. DOI: 10.3389/feart.2022.927862
[2] QI Fei, ZHANG Ronghua, LIU Xia, et al. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region [J]. Soil and Tillage Research, 2018, 184: 45-51. DOI: 10.1016/j.still.2018.06.011
[3] 丁文峰, 丁登山. 黄土高原植被破坏前后土壤团粒结构分形特征[J]. 地理研究, 2002, 21(6): 700-706. [DING Wenfeng, DING Dengshan. The fractal features of soil granule structure before and after vegetation destruction on loess plateau [J]. Geographical Research, 2002, 21(6): 700-706] DOI: 10.1007/s11769-002-0038-4
[4] 吴承祯, 洪伟. 不同经营模式土壤团粒结构的分形特征研究[J]. 土壤学报, 1999, 36(2): 162-167. [WU Chengzhen, HONG Wei. Study on fractal features of soil aggregate structure under different management patterns [J]. Acta Pedologica Sinica, 1999, 36(2): 162-167] DOI: 10.11766/trxb199706200203
[5] 张秦岭, 李占斌, 徐国策, 等. 丹江鹦鹉沟小流域不同土地利用类型的粒径特征及土壤颗粒分形维数[J]. 水土保持学报, 2013, 27(2): 244-249. [ZHANG Qinling, LI Zhanbin, XU Guoce, et al. Soil particle-size distribution and fractal dimension of different land use types in Yingwugou small watershed of Dan River [J]. Journal of Soil and Water Conservation, 2013, 27(2): 244-249] DOI: 10.13870/j.cnki.stbcxb.2013.02.039
[6] 罗清虎, 吴建召, 崔羽, 等. 洪涝灾害干扰下受损自然恢复林地土壤基本性状及分形维数特征[J]. 应用与环境生物学报, 2019, 25(1): 29-37. [LOU Qinghu, WU Jianzhao, CUI Yu, et al. Characteristics of soil properties and fractal dimensions of destroyed and naturally restored forest land under flood disaster disturbance [J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(1): 29-37] DOI: 10.19675/j.cnki.1006-687x.2018.04032
[7] 黄语芯, 虞西尔, 高若允, 等.干热河谷植物沙丘形态及植物功能性状特征与土壤分形维数的关系[J]. 应用与环境生物学报, 2022, 28(4): 1019-1026. [HUANG Yuxin, YU Xier, GAO Ruoyun, et al. Relationship between morphological and functional characteristics of phytogenic mounds and soil fractal dimensions in a dry-hot Jiangjiagou valley [J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(4): 1019-1026] DOI: 10.19675/j.cnki.1006-687x.2021.09021
[8] 王国梁, 周生路, 赵其国. 土壤颗粒的体积分形维数及其在土地利用中的应用[J]. 土壤学报, 2005, 42(4): 545-550. [WANG Guoliang, ZHOU Shenglu, ZHAO Qiguo. Volume fractal dimension of soil particles and its applications to land use [J]. Acta Pedologica Sinica, 2005, 42(4): 545-550]
[9] CHEN Xiaoyan, ZHOU Ji. Volume-based soil particle fractal relation with soil erodibility in a small watershed of purple soil [J]. Environmental Earth Sciences, 2013, 70(4): 1735-1746. DOI: 10.1007/s12665-013-2261-y
[10] 郭明, 李新. Meta分析及其在生态环境领域研究中的应用[J]. 中国沙漠, 2009, 29(5): 911-919. [GUO Ming, LI Xin. Meta-analysis: A new quantitative research approach in eco-environmental sciences [J]. Journal of Desert Research, 2009, 29(5): 911-919]
[11] 黄茂伟, 田雪, 马心雨, 等. 我国耕地转变对净初级生产力的影响——基于Meta分析[J]. 应用与环境生物学报, 2023, 29(4): 898-905. [HUANG Maowei, TIAN Xue, MA Xinyu, et al. Effects of farmland transformation on net primary productivity in China based on meta-analysis [J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(4): 898-905] DOI: 10.19675/j.cnki.1006-687x.2022.08035
[12] HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology [J]. Ecology, 1999, 80(4): 1150-1156.
[13] SHI Xiaoqing, QIN Tianling, YAN Denghua, et al. A meta-analysis on effects of root development on soil hydraulic properties [J]. Geoderma, 2021, 403: 115363. DOI: 10.1016/j.geoderma.2021.115363
[14] JIA Zijian, WENG Baisha, YAN Denhua, et al. The effects of different factors on soil water infiltration properties in High Mountain Asia: A meta-analysis [J]. Catena, 2024, 234: 107583. DOI: 10.1016/j.catena.2023.107583
[15] CHEN Ying, FENG Jiguang, YUAN Xia, et al. Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: A meta-analysis [J]. Geoderma, 2020, 370: 114363. DOI: 10.1016/j.geoderma.2020.114363
[16] 肖霞, 伍兴国. 线性回归中多重共线性的几何解释[J]. 统计与决策, 2021, 37(21): 46-51. [XIAO Xia, WU Xingguo. Geometric interpretation of multicollinearity in linear regression [J]. Statistics & Decision, 2021, 37(21): 46-51] DOI: 10.13546/j.cnki.tjyjc.2021.21.009
[17] 高阳. 对多重共线性检测指标的一些研究[D]. 兰州: 兰州大学, 2019: 1-44. [GAO Yang. Some studies on multi-collinearity detection indicators [D]. Lanzhou: Lanzhou University, 2019: 1-44]
[18] 郑景云, 卞娟娟, 葛全胜, 等. 中国1951-1980年及1981-2010年的气候区划[J]. 地理研究, 2013, 32(6): 987-997. [ZHENG Jingyun, BIAN Juanjuan, GE Quansheng, et al. The climate regionalization in China for 1951-1980 and 1981-2010 [J]. Geographical Research, 2013, 32(6): 987-997] DOI: 10.11821/yj2013060002
[19] 王红营, 郭中领, 王仁德, 等. 河北坝上植被恢复措施对土壤性质的影响[J]. 水土保持研究, 2016, 23(5): 74-79+84. [WANG Hongying, GUO Zhongling, WANG Rende, et al. Effect of different restoration measures on soil properties in Bashang area, Hebei province [J]. Research of Soil and Water Conservation, 2016, 23(5): 74-79+84] DOI: 10.13869/j.cnki.rswc.2016.05.007
[20] 王国玲, 苏志珠, 毛丽, 等. 中国北方农牧交错带鄂尔多斯高原段土壤表层粒度特征[J]. 中国沙漠, 2019, 39(3): 183-190. [WANG Guoling, SU Zhizhu, MAO Li, et al. Characteristics of soil surface grain size in Ordos plateau along the agro-pastoral ecotone of North China [J]. Journal of Desert Research, 2019, 39(3): 183-190] DOI: 10.7522/j.issn.1000-694X.2019.00018
[21] 田卓, 张帅普, 王醒, 等. 龙脊梯田不同土地利用方式下土壤粒径分形特征[J]. 农业现代化研究, 2023, 44(4): 724-735. [TIAN Zhuo, ZHANG Shuaipu, WANG Xing, et al. Fractal characteristics of soil particle under different land use patterns in Longji terrace [J]. Research of Agricultural Modernization, 2023, 44(4): 724-735] DOI: 10.13872/j.1000-0275.2023.0066
[22] 苑依笑, 王仁德, 常春平, 等. 风蚀作用下农田土壤细颗粒的粒度损失特征及其对土壤性质影响[J]. 水土保持学报, 2018, 32(2): 104-109+119. [YUAN Yixiao, WANG Rende, CHANG Chunping, et al. Loss characteristics of fine particles by wind in farmland and its effect on soil properties [J]. Journal of Soil and Water Conservation, 2018, 32(2): 104-109+119] DOI: 10.13870/j.cnki.stbcxb.2018.02.016
[23] 杨婷, 景航, 姚旭, 等. 黄土丘陵不同土地利用方式下土壤颗粒组成及其分形维数特征[J]. 水土保持研究, 2016, 23(3): 1-5+24. [YANG Ting, JING Hang, YAO Xu, et al. Soil particle composition and its fractal dimension characteristics of different land uses in loess hilly region [J]. Research of Soil and Water Conservation, 2016, 23(3): 1-5+24] DOI: 10.13869/j.cnki.rswc.2016.03.001
[24] 李阳兵, 魏朝富, 谢德体, 等. 岩溶山区植被破坏前后土壤团聚体分形特征研究[J]. 土壤通报, 2006, 37(1): 51-55. [LI Yangbing, WEI Chaofu, XIE Deti, et al. The fractal features of soil aggregate structure before and after vegetation destruction on karst mountain areas [J]. Chinese Journal of Soil Science, 2006, 37(1): 51-55] DOI: 10.19336/j.cnki.trtb.2006.01.011
[25] 刁二龙, 曹广超, 袁杰, 等. 香日德—柴达木河流域不同土地利用方式下土壤颗粒分形特征[J]. 西南农业学报, 2022, 35(10): 2353-2360. [DIAO Erlong, CAO Guangchao, YUAN Jie, et al. Fractal characteristics of soil particles under different land use patterns in Xiangride-Chaidamu River Basin [J]. Southwest China Journal of Agricultural Sciences, 2022, 35(10): 2353-2360] DOI: 10.16213/j.cnki.scjas.2022.10.015
[26] 马文芳, 朱云鹏, 郭倩倩, 等. 黄土丘陵区典型植被土壤剖面的颗粒分形特征[J]. 土壤, 2019, 51(3): 578-585. [MA Wenfang, ZHU Yunpeng, GUO Qianqian, et al. Fractal characteristics of soil particle compositions in soil profiles of typical vegetation types on loess hilly region [J]. Soils, 2019, 51(3): 578-585] DOI: 10.13758/j.cnki.tr.2019.03.022
[27] 李孝广, 余新晓, 张振明, 等. 黄土区土壤水分与植物耗水研究[J]. 水土保持研究, 2007, 14(5): 336-338. [LI Xiaoguang, YU Xinxiao, ZHANG Zhenming, et al. Study on soil water and the plant water consumption in the loess area [J]. Research of Soil and Water Conservation, 2007, 14(5): 336-338]
[28] DURAN ZUAZO V H, RODRIGUEZ PLEGUEZUELO C R. Soil-erosion and runoff prevention by plant covers: A review [J]. Agronomy for Sustainable Development, 2008, 28(1): 65-86. DOI: 10.1051/agro:2007062
[29] 周雷, 曲潇琳, 周涛, 等. 宁夏土壤颗粒组成特点及其影响因素分析[J]. 中国农业科学, 2023, 56(21): 4272-4287. [ZHOU Lei, QU Xiaolin, ZHOU Tao, et al. Analysis of the characteristics and influencing factors of soil particle composition in Ningxia [J]. Scientia Agricultura Sinica, 2023, 56(21): 4272-4287] DOI: 10.3864/j.issn.0578-1752.2023.21.01
[30] 欧阳帅, 项文化, 陈亮, 等. 南方山地丘陵区森林植被恢复对水土流失调控机制[J]. 水土保持学报, 2021, 35(5): 1-9. [OUYANG Shuai, XIANG Wenhua, CHEN Liang, et al. Regulation mechanisms of forest vegetation restoration on water and soil erosion in mountainous and hilly area of Southern China [J]. Journal of Soil and Water Conservation, 2021, 35(5): 1-9] DOI: 10.13870/j.cnki.stbcxb.2021.05.001
[31] 杨启红. 黄土高原典型流域土地利用与沟道工程的径流泥沙调控作用研究[D]. 北京: 北京林业大学, 2009: 83-95. [YANG Qihong. Study on the effect of land cover and gully engineerings on runoff and sediment regulation in typical watershed on loess plateu [D]. Beijing: Beijing Forestry University, 2009: 83-95]
[32] 胡文杰, 庞宏东, 王晓荣, 等. 长江中游平原湖区人工林枯落物和表层土壤持水特性[J]. 长江流域资源与环境, 2021, 30(3): 644-653. [HU Wenjie, PANG Hongdong, WANG Xiaorong, et al. Litter and topsoil water holding characteristics of artificial forest in basin plain lake area of Yangtze River [J]. Resources and Environment in the Yangtze Basin, 2021, 30(3): 644-653] DOI: 10.11870/cjlyzyyhj202103012
[33] 谢燕燕, 郭子武, 林树燕, 等. 毛竹林下植被演替过程中土壤颗粒组成与水分入渗特征[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 108-116. [XIE Yanyan, GUO Ziwu, LIN Shuyan, et al. Soil particle distribution and water infiltration characteristics during vegetation succession in Phyllostachys edulis stands [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2024, 48(3): 108-116] DOI: 10.12302/j.issn.1000-2006.202205039
[34] 齐雁冰, 常庆瑞, 惠泱河. 人工植被恢复荒漠化逆转过程中土壤颗粒分形特征[J]. 土壤学报, 2007, 44(3): 566-570. [QI Yanbing, CHANG Qingrui, HUI Yanghe. Fractal features of soil particles in desertification reversing process by artificial vegetation [J]. Acta Pedologica Sinica, 2007, 44(3): 566-570] DOI: 10.11766/trxb200512210327
[35] 南富森. 祁连山不同植被类型区土壤理化性质及影响因素研究[D]. 兰州: 西北师范大学, 2023: 20-22. [NAN Fushen. Soil physicochemical properties and influencing factors in different vegetation type zones in the Qilian Mountains, China [D]. Lanzhou: Northwest Normal University, 2023: 20-22] DOI: 10.27410/d.cnki.gxbfu.2023.001598
[36] 王成龙. 四种植物根系剪拉组合力损伤自修复后固土特性[D]. 内蒙古: 内蒙古农业大学, 2021: 28-33. [WANG Chenglong. Study on the soil reinforcement of four plants roots damaged by shear-tensile combination [D]. Inner Mongolia: Inner Mongolia Normal University, 2021: 28-33] DOI: 10.27229/d.cnki.gnmnu.2021.000042
[37] 刁二龙, 曹广超, 曹生奎, 等. 不同尺度下土壤粒径及分形特征[J]. 水土保持研究, 2024, 31(5): 212-220. [DIAO Erlong, CAO Guangchao, CAO Shengkui, et al. Soil particle size and fractal characteristics at different scales [J]. Research of Soil and Water Conservation, 2024, 31(5): 212-220] DOI: 10.13869/j.cnki.rswc.2024.05.015
[38] 蒋嘉瑜, 刘任涛, 张安宁. 干旱与半干旱荒漠草原区柠条灌丛土壤分形维数与理化性质对比分析[J]. 水土保持研究, 2021, 28(4): 54-61+69. [JIANG Jiayu, LIU Rentao, ZHANG Anning. Comparative analysis of soil fractal dimension and soil physical and chemical properties between caragana korshinskii shrub plantations in arid and semi-arid desert steppe [J]. Research of Soil and Water Conservation, 2021, 28(4): 54-61+69] DOI: 10.13869/j.cnki.rswc.2021.04.008
[39] 麻虹宇, 李保国, 蔡斌, 等. 干旱半干旱区地表覆盖对土壤风蚀的影响[J]. 水土保持研究, 2023, 30(2): 29-35. [MA Hongyu, LI Baoguo, CAI Bin, et al. Effect of soil cover on soil wind erosion in arid and semi-arid regions [J]. Research of Soil and Water Conservation, 2023, 30(2): 29-35] DOI: 10.13869/j.cnki.rswc.2023.02.039
[40] 顾展飞, 魏海龙, 全鑫, 等. 降雨和坡度对桂北岩溶石山地区水土流失的影响研究[J]. 水利水电技术(中英文), 2025, 56(3): 251-262. [GU Zhanfei, WEI Hailong, QUAN Xin, et al. Study on the effects of rainfall and slope on soil erosion in karst rocky mountain areas of northern Guangxi Zhuang Autonomous Region [J]. Water Resources and Hydropower Engineering, 2025, 56(3): 251-262] DOI: 10.13928/j.cnki.wrahe.2025.03.020

备注/Memo

备注/Memo:
收稿日期(Received date): 2024-10-10; 改回日期(Accepted date):2025- 04- 02
基金项目(Foundation item): 国家自然科学基金(42071132)。[National Natural Science Foundation of China(42071132)]
作者简介(Biography): 胡祉昱(2003-),女,江西南昌人,本科生,主要研究方向:自然地理学。[HU Zhiyu(2003-), female, born in Nanchang, Jiangxi Province, B.S. candidate, research on physical geography] E-mail: hzy0825@126.com
*通讯作者(Corresponding author): 林勇明(1982-),男,博士,教授,主要研究方向:自然地理学、恢复生态学。[LIN Yongming(1982-), male, Ph.D., professor, research on physical geography and restoration ecology] E-mail: monkey1422@163.com
更新日期/Last Update: 2025-03-30