[1]崔国品,董 铭*,苏 怀.不同气候条件下云南高原典型基岩对植被生长的调控效应[J].山地学报,2025,(2):207-219.[doi:10.16089/j.cnki.1008-2786.000887]
 CUI Guopin,DONG Ming*,SU Huai.Regulatory Effects of Bedrock Matrix under Climatic Conditions on Vegetation Growth in Yunnan Plateau of Southwestern China[J].Mountain Research,2025,(2):207-219.[doi:10.16089/j.cnki.1008-2786.000887]
点击复制

不同气候条件下云南高原典型基岩对植被生长的调控效应()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第2期
页码:
207-219
栏目:
山地环境
出版日期:
2025-06-25

文章信息/Info

Title:
Regulatory Effects of Bedrock Matrix under Climatic Conditions on Vegetation Growth in Yunnan Plateau of Southwestern China
文章编号:
1008-2786-(2025)2-207-13
作者:
崔国品 董 铭* 苏 怀
(云南师范大学 地理学部, 昆明 650500)
Author(s):
CUI Guopin DONG Ming* SU Huai
(Faculty of Geography, Yunnan Normal University,Kunming 650500, China)
关键词:
基岩-气候交互作用 归一化植被指数 云南省
Keywords:
bedrock-climate interaction Normalized Difference Vegetation Index(NDVI) the Yunnan Plateau
分类号:
Q948.1
DOI:
10.16089/j.cnki.1008-2786.000887
文献标志码:
A
摘要:
基岩类型对地表植被生长的调控作用存在显著气候敏感性,但其作用强度阈值与耦合机制以及区域分异规律尚未明晰。云南高原具有立体气候特征,气候梯度完整,区域内基岩分异显著,发育地球化学性质迥异的风化壳系统。本文以云南省为研究区,选取理化性质差异显著的基性火山岩与碳酸盐岩两类代表性基岩,基于2003—2022年长时间序列多源遥感数据,开展基岩上覆植被归一化植被指数(Normalized Difference Vegetation Index,NDVI)的时空格局分析。研究发现:(1)云南省可划分为18个气候区,其中12个气候区同时包含基性火山岩与碳酸盐岩分布。(2)基性火山岩区NDVI均值(0.571)比碳酸盐岩区(0.554)高2.99%(p<0.05),该优势在中温带半湿润区(相对差异8.30%)和南亚热带半湿润区(相对差异7.48%)尤为突出,而在北热带湿润区差异缩减至0.56%。(3)干燥度(Aridity Index, AI)与NDVI值相对差异的响应曲线总体呈正态分布,半湿润气候条件下基岩效应峰值出现在AI值为1.08±0.08的区间,极端干旱或极端湿润气候条件基岩属性对植被生长的调控作用显著弱化。本研究首次量化了基岩-气候交互作用对植被生长的调控阈值,揭示了石漠化治理需考虑基岩本底-气候条件协同作用的科学规律,可以为喀斯特地区生态修复提供精准的时空决策依据。
Abstract:
Regulatory effect of bedrock matrix on surface vegetation growth is significantly sensitive to climate, but its threshold of influence intensity, coupling mechanisms, and heterogeneity remained insufficiently understood. In the Yunnan Plateau of Southwestern China, there are comprehensive bedrock differentiations, governed by three-dimensional climate configuration with complete climate gradients, making the bedrocks into rich weathering crust systems with distinct geochemical properties.
In this paper, two types of representative bedrocks, basic volcanic bedrocks/ carbonate bedrocks, with significant differences in physicochemical properties in the Yunnan Plateau, were selected for comparative investigations into their roles in dominating overlying vegetation growth. Based on long-term(2003-2022)multi-source remote-sensing data, it conducted spatiotemporal analysis of the Normalized Difference Vegetation Index(NDVI)for vegetation underlying the two bedrock types.
(1)The results revealed that the Yunnan Plateau could be divided into 18 climatic zones, 12 of which contain both basic volcanic and carbonate bedrocks.
(2)The mean NDVI in basic volcanic bedrock zones(0.571)was 2.99% higher than that in carbonate bedrock zones(0.554)(p<0.05), with this lead particularly pronounced in the mid-temperate semi-humid zone(8.30% relative difference)and the southern subtropical semi-humid zone(7.48% relative difference), while the difference diminishes to 0.56% in the northern tropical humid zone.
(3)The response curve between Aridity Index(AI)and the relative differences in NDVI values was generally normally distributed. Under semi-humid climate conditions, the peak bedrock effect occurred within an AI range of 1.08±0.08, whereas under extremely dry or extremely humid climate conditions the regulatory effect of bedrock properties on vegetation growth was significantly weakened.
This study quantified the regulation threshold of bedrock-climate interaction on vegetation growth, which should be referred as a scientific metric in ecological restoration, particularly the application of the bedrock-climate synergy in rocky desertification control.

参考文献/References:

[1] PIAO Shilong, FRIEDLINGSTEIN P, CIAIS P, et al. Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades [J]. Geophysical Research Letters, 2006, 33(23): L23402. DOI: 10.1029/2006gl028205
[2] REMPE D M, DIETRICH W E. A bottom-up control on fresh-bedrock topography under landscapes [J]. Proceedings of the National Academy of Sciences, 2014, 111(18): 6576-6581. DOI: 10.1073/pnas.1404763111
[3] LIU Hongyan, JIANG Zihan, DAI Jingxi, et al. Rock crevices determine woody and herbaceous plant cover in the karst critical zone [J]. Science China Earth Sciences, 2019, 62: 1756-1763. DOI: 10.1007/s11430-018-9328-3
[4] HAHM W J, RIEBE C S, LUKENS C E, et al. Bedrock composition regulates mountain ecosystems and landscape evolution [J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3338-3343. DOI: 10.1073/pnas.1315667111
[5] 罗美, 周运超, 唐凤华. 不同植被下碳酸盐岩石发育形成土壤属性研究[J]. 中国岩溶, 2023, 42(2): 277-289. [LUO Mei, ZHOU Yunchao, TANG Fenghua. Soil properties of carbonate rocks under different vegetation types [J]. Carsologica Sinica, 2023, 42(2): 277-289] DOI: 10.11932 /karst2022y17
[6] UHLIG D, SCHUESSLER J A, BOUCHEZ J, et al. Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes [J]. Biogeosciences, 2017, 14(12): 3111-3128. DOI: 10.5194/bg-14-3111-2017
[7] DAWSON T E, HAHM W J, CRUTCHFIELD‐PETERS K. Digging deeper: What the critical zone perspective adds to the study of plant ecophysiology [J]. New Phytologist, 2020, 226(3): 666-671. DOI: 10.1111/nph.16410
[8] REMPE D M, DIETRICH W E. Direct observations of rock moisture, a hidden component of the hydrologic cycle [J]. Proceedings of the National Academy of Sciences, 2018, 115(11): 2664-2669. DOI: 10.1073/pnas.1800141115
[9] JIANG Zihan, LIU Hongyan, WANG Hongya, et al. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity [J]. Nature Communications, 2020, 11(1): 2392-2401. DOI: 10.1038/s41467-020-16156-1
[10] 杨珊, 何寻阳, 苏以荣, 等. 岩性和土地利用方式对桂西北喀斯特土壤肥力的影响[J]. 应用生态学报, 2010, 21(6): 1596-1602. [YANG Shan, HE Xunyang, SU Yirong, et al. Effects of parent rock and land use pattern on soil fertility in karst region of northwest Guangxi [J]. Chinese Journal of Applied Ecology, 2010, 21(6): 1596-1602] DOI: 10.13287/j.1001-9332.2010.0218
[11] ZOU Linqing, TIAN Feng, LIANG Tiancheng, et al. Assessing the upper elevational limits of vegetation growth in global high-mountains [J]. Remote Sensing of Environment, 2023, 286: 113423. DOI: 10.1016/j.rse.2022.113423
[12] 王宇. 云南省农业气候资源及区划[M]. 北京: 气象出版杜, 1990: 41-53. [WANG Yu. Agricultural climate resources and regionalization of Yunnan [M]. Beijing: China Meteorological Press, 1990: 41-53]
[13] 段旭, 陶云, 段长春. 云南省细网格气候区划及气候代表站选取[J]. 大气科学学报, 2011, 34(3): 336-342. [DUAN Xu, TAO Yun, DUAN Changchun. A fine mesh climate division and the selection of representative climate stations in Yunan province [J]. Transactions of Atmospheric Sciences, 2011, 34(3): 336-342] DOI: 10.3969/j.issn.1674-7097.2011.03.010
[14] MA Yuju, ZUO Liyan, GAO Jiangbo, et al. The karst NDVI correlation with climate and its BAS-BP prediction based on multiple factors [J]. Ecological Indicators, 2021, 132: 108254. DOI: 10.1016/j.ecolind.2021.108254
[15] 刘艺琪. 滇东高原石灰岩、玄武岩风化壳储水结构差异及原因研究[D]. 昆明: 云南师范大学, 2024: 1-14. [LIU Yiqi: Study on the differences and causes of water storage structures between limestone and basalt weathered crusts in the eastern Yunnan plateau [D]. Kunming: Yunnan Normal University, 2024: 1-14] DOI: 10.27459/d.cnki.gynfc.2024.001129
[16] JIANG Miao, LIN Yi, CHAN Tingon, et al. Geologic factors leadingly drawing the macroecological pattern of rocky desertification in southwest China [J]. Scientific Reports, 2020, 10(1): 1440-1451. DOI: 10.1038/s41598-020-58550-1
[17] 宋同清, 彭晚霞, 杜虎, 等. 中国西南喀斯特石漠化时空演变特征、发生机制与调控对策[J]. 生态学报, 2014, 34(18): 5328-5341. [SONG Tongqing,PENG Wanxia,DU Hu, et al. Occurrence, spatial-temporal dynamics and regulation strategies of karst rocky desertification in southwest China [J]. Acta Ecologica Sinica, 2014, 34(18): 5328-5341] DOI: 10.5846/stxb201405090929
[18] 王永红, 鲁恒. 2001—2018 年云南省植被变化及驱动力[J]. 山地学报, 2022, 40(4): 531-541. [WANG Yonghong, LU Heng. Driving force of vegetation cover change in Yunnan province from 2001 to 2018 [J]. Mountain Research, 2022, 40(4): 531-541] DOI: 10.16089/j.cnki.1008-2786.000691
[19] 赵平伟, 李宏波, 郭萍, 等. 滇西南地区 NDVI 变化及其对不同时间尺度干湿变化的响应[J]. 山地学报, 2018, 36(2): 229-238. [ZHAO Pingwei, LI Hongbo, GUO Ping, et al. Changes in NDVI and its response to changes in dry and wet weather at different time scales in southwestern Yunnan, China [J]. Mountain Research, 2018, 36(2): 229-238] DOI: 10.16089/j.cnki.1008-2786.000318
[20] MYNENI R B, HALL F G, SELLERS P J, et al. The interpretation of spectral vegetation indexes [J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 481-486. DOI: 10.1109/tgrs.1995.8746029
[21] KUMAR L, MUTANGA O. Google Earth Engine applications since inception: Usage, trends, and potential [J]. Remote Sensing, 2018, 10(10): 1509-1524. DOI: 10.3390/rs10101509
[22] CHUNG S L, JAHN B. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary [J]. Geology, 1995, 23(10): 889-892. DOI: 10.1130/0091-7613(1995)023<0889:pliigo>2.3.co; 2
[23] ZHAO Xinwei, ZHOU Jing, MA Fang, et al. Using a Gaussian mathematical model to define eruptive stages of young volcanic rocks in Tengchong based on laser 40Ar/39Ar dating [J]. Science China Earth Sciences, 2020, 63(5): 662-673. DOI: 10.1007/s11430-019-9569-9
[24] 黄行凯, 莫宣学, 喻学惠, 等. 滇东南马关和屏边地区新生代玄武岩地球化学特征及深部动力学意义[J]. 岩石学报, 2013, 29(4): 1325-1337. [HUANG Xingkai, MO Xuanxue, YU Xuehui, et al. Geochemical characteristics and geodynamic significance of Cenozoic basalts from Maguan and Pingbian,southeastern Yunnan province[J]. Acta Petrologica Sinica, 2013, 29(4): 1325-1337] DOI: 1000-0569/2013/029(04)-1325-37
[25] PRINGLE M J, DENHAM R J, DEVADAS R. Identification of cropping activity in central and southern Queensland, Australia, with the aid of MODIS MOD13Q1 imagery [J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 19: 276-285. DOI: 10.1016/j.jag.2012.05.015
[26] PENG Shouzhang, DING Yongxia, LIU Wenzhao, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017 [J]. Earth System Science Data, 2019, 11(4): 1931-1946. DOI: 10.5194/essd-11-1931-2019
[27] MU Qiaozhen, HEINSCH F A, ZHAO Maosheng, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data [J]. Remote Sensing of Environment, 2007, 111(4): 519-536. DOI: 10.1016/j.rse.2007.04.015
[28] YANG Jie, HUANG Xin. The 30 m annual land cover and its dynamics in China from 1990 to 2019 [J]. Earth System Science Data Discussions, 2021, 13: 3907-3925. DOI: 10.5194/essd-13-3907-2021
[29] 黄瑾, 崔巍, 钟鸣, 等. 结合遥感数据对云贵地区蒸散发量及干湿变化特征的研究[J]. 中国农村水利水电, 2021(1): 98-104. [HUANG Jin, CUI Wei, ZHONG Ming, et al. Research on the characteristics of evapotranspiration and climate aridity based on remote sensing data in Yunnan-Guizhou region [J]. China Rural Water and Hydropower, 2021(1): 98-104] DOI: 1007-2284(2021)01-0098-07
[30] CHU Hongshuai, VENEVSKY S, WU Chao, et al. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015 [J]. Science of the Total Environment, 2019, 650: 2051-2062. DOI: 10.1016/j.scitotenv.2018.09.115
[31] LI Shuang, XU Liang, JING Yinghong, et al. High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques [J]. International Journal of Applied Earth Observations and Geoinformation, 2021, 105: 102640. DOI: 10.1016/j.jag.2021.102640
[32] XIAO Xiong, GUAN Qingyu, ZHANG Zepeng, et al. Investigating the underlying drivers of vegetation dynamics in cold-arid mountainous [J]. Catena, 2024, 237: 107831. DOI: 10.1016/j.catena.2024.107831
[33] 徐虹, 刘琴. 2001—2019 年云南省植被NDVI变化及其气候因子的关系[J]. 水土保持研究, 2022, 29(1): 162-168. [XU Hong, LIU Qin. Analysis of vegetation NDVI dynamic and its relationship with climatic factors in Yunnan province during 2001-2019 [J]. Research of Soil and Water Conservation, 2022, 29(1): 162-168] DOI: 10.13869/j.cnki.rswc.2022.01.018
[34] 胡学平, 王式功, 许平平, 等. 2009—2013年中国西南地区连续干旱的成因分析[J]. 气象, 2014, 40(10): 1216-1229. [HU Xueping, WANG Shigong, XU Pingping, et al. Analysis on causes of continuous drought in southwest China during 2009-2013 [J]. Meteorological Monthly, 2014, 40(10): 1216-1229] DOI: 10.7519/j.issn.1000-0526.2014.10.006
[35] 杨兴海, 袁林果, 姜中山, 等. 应用GPS垂向位移定量分析2011—2020年云南省极端干旱时空特征[J]. 地球物理学报, 2022, 65(8): 2828-2843. [YANG Xinghai, YUAN Linguo, JIANG Zhongshan, et al. Quantitative analysis of abnormal drought in Yunnan province from 2011 to 2020 using GPS vertical displacement observations [J]. Chinese Journal of Geophysics, 2022, 65(8): 2828-2843] DOI: 10.6038/cjg2022P0763
[36] 马士彬, 安裕伦, 杨广斌. 基于GIS的喀斯特区域不同岩性基底植被NDVI变化分析[J]. 水土保持研究, 2017, 24(2): 202-206. [MA Shibin, AN Yulun, YANG Guangbin. Analysis of vegetable NDVI variation on various lithology in karst area based on GIS [J]. Research of Soil and Water Conservation, 2017, 24(2): 202-206] DOI: 10.13869/j.cnki.rswc.2017.02.034
[37] WOLF J, BROCARD G, WILLENBRING J, et al. Abrupt change in forest height along a tropical elevation gradient detected using airborne lidar [J]. Remote Sensing, 2016, 8(10): 864-874. DOI: 10.3390/rs8100864
[38] HAHM W J, REMPE D M, DRALLE D N, et al. Lithologically controlled subsurface critical zone thickness and water storage capacity determine regional plant community composition [J]. Water Resources Research, 2019, 55(4): 3028-3055. DOI: 10.1029/2018WR023760
[39] LIU Hongyan, DAI Jingyu, XU Chongyang, et al. Bedrock-associated belowground and aboveground interactions and their implications for vegetation restoration in the karst critical zone of subtropical southwest China [J]. Progress in Physical Geography: Earth and Environment, 2021, 45(1): 7-19. DOI: 10.1177/0309133320949865
[40] MORFORD S L, HOULTON B Z, DAHLGREN R A. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock [J]. Nature, 2011, 477(7362): 78-81. DOI: 10.1038/nature10415
[41] HOULTON B Z, MORFORD S L, DAHLGREN R A. Convergent evidence for widespread rock nitrogen sources in Earth's surface environment [J]. Science, 2018, 360(6384): 58-62. DOI: 10.1126/science.aan4399
[42] 宋青春, 邱维理, 张振春. 地质学基础[M]. 北京: 高等教育出版社, 2005: 38-156. [SONG Qingchun, QIU Weili, ZHANG Zhenchun. Fundamentals of Geology [M]. Beijing: Higher Education Press, 2005: 38-156]
[43] GALLE O K. Chemical analysis of some standard carbonate rocks [J]. Chemical Geology, 1969, 5(2): 143-146. DOI: 10.1016/0009-2541(69)90030-8
[44] SHEN Youxin, YU Yang, LUCAS-BORJA M E, et al. Change of soil K, N and P following forest restoration in rock outcrop rich karst area [J]. Catena, 2020, 186: 104395. DOI: 10.1016/j.catena.2019.104395
[45] CHEN Hao, LI Dejun, MAO Qinggong, et al. Resource limitation of soil microbes in karst ecosystems [J]. Science of the Total Environment, 2019, 650: 241-248. DOI: 10.1016/j.scitotenv.2018.09.036
[46] SHARMA P, DUBEY R S. Lead toxicity in plants [J]. Brazilian Journal of Plant Physiology, 2005, 17: 35-52. DOI:10.1590/S1677-04202005000100004
[47] 苏维词. 中国西南岩溶山区石漠化的现状成因及治理的优化模式[J]. 水土保持学报, 2002, 16(2): 29-32. [SU Weici. Controlling model for rocky desertification of karst mountainous region and its preventing strategy in southwest China [J]. Journal of Soil and Water Conservation, 2002, 16(2): 29-32] DOI: 10.3321/j.issn:1009-2242.2002.02.008
[48] TONG Xiaowei, WANG Kelin, BRANDT M, et al. Assessing future vegetation trends and restoration prospects in the karst regions of southwest China [J]. Remote Sensing, 2016, 8(5): 357-374. DOI: 10.3390/rs8050357
[49] HUANG Qiuhao, CAI Yunlong. Spatial pattern of karst rock desertification in the middle of Guizhou province, southwestern China [J]. Environmental Geology, 2007, 52: 1325-1330. DOI: 10.1007/s00254-006-0572-y
[50] KLOS P Z, GOULDEN M L, RIEBE C S, et al. Subsurface plant-accessible water in mountain ecosystems with a Mediterranean climate [J]. Wiley Interdisciplinary Reviews: Water, 2018, 5(3): e1277. DOI: 10.1002/wat2.1277
[51] LAPIDES D A, HAHM W J, FORREST M, et al. Inclusion of bedrock vadose zone in dynamic global vegetation models is key for simulating vegetation structure and function [J]. Biogeosciences, 2024, 21(7): 1801-1826. DOI: 10.5194/egusphere-2023-2572
[52] 刘艺琪, 苏怀, 张殷豪, 等. 昆明石灰岩及玄武岩风化壳微形态对上覆植被生长的影响[J]. 西南林业大学学报, 2023, 43(6): 38-44. [LIU Yiqi, SU Huai, ZHANG Yinhao, et al. The micromorphology of limestone and basalt regolith affects the growth of overlying vegetation in Kunming [J]. Journal of Southwest Forestry University, 2023, 43(6): 38-44] DOI: 10.11929/j.swfu.202212002
[53] STEPHENSON N L. Climatic control of vegetation distribution: The role of the water balance [J]. The American Naturalist, 1990, 135(5): 649-670. DOI: 10.1086/285067
[54] 张宝堃, 朱岗昆. 中国气候区划(初稿)[M]. 北京: 科学出版社, 1959: 218-323. [ZHANG Baokun, ZHU Gangkun. Climate regionalization of China(draft)[M]. Beijing: Science Press, 1959: 218-323]
[55] LI Saibo, HE Shaoyang. The variation of net primary productivity and underlying mechanisms vary under different drought stress in Central Asia from 1990 to 2020 [J]. Agricultural and Forest Meteorology, 2022, 314: 108767. DOI: 10.1016/j.agrformet.2021.108767
[56] 杜文鹏, 闫慧敏, 甄霖, 等. 西南岩溶地区石漠化综合治理研究[J]. 生态学报, 2019, 39(16): 5798-5808. [DU Wenpeng, YAN Huimin, ZHEN Lin, et al. The experience and practice of desertification control in karst region of southwest China [J]. Acta Ecologica. Sinica, 2019, 39(16): 5798-5808] DOI: 10.5846/stxb201812292838

备注/Memo

备注/Memo:
收稿日期(Received date): 2024-12-11; 改回日期(Accepted date): 2025- 03-24
基金项目(Foundation item): 云南省科技人才与平台计划项目(202305AC160086); 云南师范大学研究生科研创新基金(YJSJJ23-B105)。[Yunnan Province Science and Technology Talent and Platform Program(202305AC160086); Yunnan Normal University Graduate Research Innovation Fund(YJSJJ23-B105)]
作者简介(Biography): 崔国品(1999-),男,云南曲靖人,硕士研究生,主要研究方向:自然环境演变。[CUI Guopin(1999-), male, born in Qujing, Yunnan Province, M.Sc. candidate, research on environment evolution] E-mail: 2223130108@ynnu.edu.cn
*通讯作者(Corresponding author): 董铭(1976-),女,硕士,副教授,主要研究方向:自然环境演变。[DONG Ming(1976-), female, M.Sc., associate professor, research on environment evolution] E-mail: dongm2020@163.com
更新日期/Last Update: 2025-03-30