[1]姜佳佳,段克勤*,王 琼,等.2000—2100年喜马拉雅山冰川变化及其水文效应评估[J].山地学报,2025,(2):220-234.[doi:10.16089/j.cnki.1008-2786.000888]
 JIANG Jiajia,DUAN Keqin*,WANG Qiong,et al.Glacier Changes and Resulting Hydrological Consequences in the Himalayas(2000-2100)[J].Mountain Research,2025,(2):220-234.[doi:10.16089/j.cnki.1008-2786.000888]
点击复制

2000—2100年喜马拉雅山冰川变化及其水文效应评估()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第2期
页码:
220-234
栏目:
山地环境
出版日期:
2025-06-25

文章信息/Info

Title:
Glacier Changes and Resulting Hydrological Consequences in the Himalayas(2000-2100)
文章编号:
1008-2786-(2025)2-220-15
作者:
姜佳佳段克勤*王 琼何锦屏豆明玉李朝纲
(陕西师范大学 地理科学与旅游学院,西安 710119)
Author(s):
JIANG Jiajia DUAN Keqin* WANG Qiong HE Jinping DOU Mingyu LI Chaogang
(School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China)
关键词:
冰川变化 水文效应 CMIP6 喜马拉雅山
Keywords:
glacier changes hydrological consequence CMIP6 the Himalayas
分类号:
K903
DOI:
10.16089/j.cnki.1008-2786.000888
文献标志码:
A
摘要:
喜马拉雅山拥有全球中低纬度带规模最大的山地冰川群,其冰川补给直接影响南亚水系水资源安全。全球变暖背景下,喜马拉雅山冰川响应存在空间分异特征,但21世纪以来冰川动态演化路径及其水文效应仍存在整体上的认知空白。本研究利用偏差校正的CMIP6气候数据集与改进型Global PyGEM-OGGM模型,综合考虑冰川动力学过程与表碛热力学效应,分析预测2000—2100年SSP2- 4.5和SSP5-8.5情景下喜马拉雅山冰川系统多参数响应。结果表明:(1)经偏差校正后,CMIP6多模式集合数据在喜马拉雅山的适用性显著提升(1961—2014年),气温(偏差:-0.02 ℃,均方根误差:0.41 ℃)和降水(偏差:-22.31 mm,均方根误差:136.55 mm)的模拟误差显著降低,同时基于多源卫星融合数据验证的Global PyGEM-OGGM冰川数据集(2000—2019年)在冰川质量变化时空模拟中表现优异(相关系数分别为0.59、0.99,均方根误差为0.97 Gt、0.002 Gt),证实二者可为区域气候变化与冰川物质平衡研究提供可靠数据支撑。(2)在SSP2- 4.5和SSP5-8.5情景下,喜马拉雅山区域增温速率分别为0.28 ℃/10a和0.57 ℃/10a,至21世纪末气温较世纪初将累计上升2.45 ℃和5.12 ℃,驱动冰川面积缩减70%和85%,冰川呈现加速亏损态势。(3)冰川消融空间格局发生阶段性逆转。2000—2020年东喜马拉雅山冰川物质亏损显著,而2020年以后西喜马拉雅山在0.29 ℃/10a(SSP2- 4.5)和0.61 ℃/10a(SSP5-8.5)的增温驱动下,消融速率超越东段。(4)跨境流域径流演变呈现显著异质性。冰川持续消融将导致印度河、恒河和雅鲁藏布江流域冰川融水径流呈现先增后减的趋势。印度河流域峰值出现在2053 a±12 a(SSP2- 4.5)和2054 a±8 a(SSP5-8.5),而冰川规模较小的恒河和雅鲁藏布江流域则分别提前至2033 a±7 a/2046 a±7 a和2031 a±6 a/2044 a±8 a。至世纪末,雅鲁藏布江流域冰川径流量将衰减至基准期(2000—2009年)的40%。本研究提出的21世纪喜马拉雅山冰川变化的趋势,可为跨境水资源协同管理和区域气候适应策略的制定提供决策基准。
Abstract:
The Himalayas have the largest mountain glacier concentration in the mid-low latitudes, where glacial meltwater predominately governs the water resource security of South Asia. Under global warming, the Himalayan glaciers exhibit spatially heterogeneous responses, yet their glaciological trajectories and associated hydrological consequences for the 21st century remained insufficiently quantified.
In this study, it integrated bias-corrected CMIP6 climate dataset with an improved Global PyGEM-OGGM model, incorporating glacier dynamics and supraglacial debris thermodynamic effects, to project multi-parameter responses(temperature, precipitation, glacier area, mass balance and runoff)of the Himalayan cryosphere under the scenarios of SSP2- 4.5/SSP5-8.5 from 2000 to 2100.
(1)The delta bias-corrected CMIP6 multi-model ensemble data demonstrated significant improvements in climate simulation accuracy over the Himalayas during 1961-2014, achieving marked reductions in simulation errors for temperature(bias: -0.02 ℃, RMSE: 0.41 ℃)and precipitation(bias: -22.31 mm, RMSE: 136.55 mm). Concurrently, the Global PyGEM-OGGM data, validated using multi-source satellite fusion data(2000-2019), exhibited exceptional performance in spatiotemporal simulations of glacier mass changes, with correlation coefficients of 0.59 and 0.99 and RMSE of 0.97 Gt and 0.002 Gt, respectively. These results collectively confirm that both datasets provide robust data support for regional climate change studies and glacier evolution investigations.
(2)Regional warming rates of 0.28 ℃/10a(SSP2- 4.5)and 0.57 ℃/10a(SSP5-8.5)drive cumulative temperature rises of 2.45 ℃/5.12 ℃ by the end of the 21st century relative to the early 21st century, triggering glacier area losses of 70%/85% and accelerating mass balance deficits.
(3)A phased reversal in ablation patterns emerges. In eastern Himalayas glacier mass loss dominates during 2000-2020, while post-2020, western Himalayas is expected to surpass the eastern counterparts under intensified warming(0.29 ℃/10a(SSP2- 4.5)and 0.61 ℃/10a(SSP5-8.5).
(4)Transboundary basins exhibit heterogeneous runoff responses, all following a trajectory of initial increase followed by decrease. Peak meltwater discharge in the Indus River basin occurs at 2053 a±12 a(SSP2- 4.5)and 2054 a±8 a(SSP5-8.5), whereas smaller glaciers in the Ganges River and the Yarlung Zangbo River basins show earlier peaks: 2033 a±7 a(SSP2- 4.5)/2046 a±7 a(SSP5-8.5)and 2031 a±6 a(SSP2- 4.5)/2044 a±8 a(SSP5-8.5), respectively. By the end of the 21st century, the Yarlung Zangbo River's glacial runoff will decline to 40% of the baseline period(2000-2009).
This study establishes a pattern of glacier change in the Himalayas in the 21st century, which can provide a decision-making benchmark for the collaborative management of cross-border water resources and the formulation of regional climate adaptation strategies.

参考文献/References:

[1] 李耀军, 丁永建, 上官冬辉, 等. 1961-2016年全球变暖背景下冰川物质亏损加速度研究[J]. 中国科学: 地球科学, 2021, 51(3): 453-464. [LI Yaojun, DING Yongjian, SHANGGUAN Donghui, et al. Climate-driven acceleration of glacier mass loss on global and regional scales during 1961-2016 [J]. Science China Earth Sciences, 2021, 51(3): 453-464] DOI: 10.1360/N072020-0189
[2] HUGONNET R, MCNABB R, BERTHIER E, et al. Accelerated global glacier mass loss in the early twenty-first century [J]. Nature, 2021, 592(7856): 726-731. DOI: 10.1038/s41586-021-03436-z
[3] LEE E, CARRIVICK J L, QUINCEY D J, et al. Accelerated mass loss of Himalayan glaciers since the Little Ice Age [J]. Scientific Reports, 2021, 11(1): 24284. DOI: 10.1038/s41598-021-03805-8
[4] YAO Tandong, THOMPSON L, YANG Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings [J]. Nature Climate Change, 2012, 2(9): 663-667. DOI: 10.1038/nclimate1580
[5] LUTZ A F, IMMERZEEL W W, SHRESTHA A B, et al. Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation [J]. Nature Climate Change, 2014, 4(7): 587-592. DOI: 10.1038/nclimate2237
[6] HUSS M, HOCK R. Global-scale hydrological response to future glacier mass loss [J]. Nature Climate Change, 2018, 8(2): 135-140. DOI: 10.1038/s41558-017-0049-x
[7] LIU Wenhui, XIE Changwei, ZHAO Lin, et al. Dynamic changes in lakes in the Hoh Xil region before and after the 2011 outburst of Zonag Lake [J]. Journal of Mountain Science, 2019, 16(5): 1098-1110. DOI: 10.1007/s11629-018-5085-0
[8] ALI S, HAIDER R, ABBAS W, et al. Empirical assessment of rockfall and debris flow risk along the Karakoram Highway, Pakistan [J]. Natural Hazards, 2021, 106: 2437-2460. DOI: 10.1007/s11069-021-04549-4
[9] 段克勤, 姚檀栋, 石培宏, 等.青藏高原东部冰川平衡线高度的模拟及预测[J]. 中国科学: 地球科学, 2017, 47(1): 104-113. [DUAN Keqin, YAO Tandong, SHI Peihong, et al. Simulation and prediction of equilibrium line altitude of glaciers in the eastern Tibetan Plateau [J]. Science China Earth Sciences, 2017, 47(1): 104-113] DOI: 10.1360/N072016-00062
[10] 段克勤, 石培宏, 何锦屏.山地冰川变化的数值模拟及其在亚洲高山区的应用[J]. 冰川冻土, 2022, 44(3): 753-761. [DUAN Keqin, SHI Peihong, HE Jinping. Numerical simulations of mountain glacial changes and its application in Asian High Mountains [J]. Journal of Glaciology and Geocryology, 2022, 44(3): 753-761] DOI: 10.7522/j.issn.1000-0240.2022.0074
[11] ZHAO Hongyu, SU Bo, LEI Huajin, et al. A new projection for glacier mass and runoff changes over High Mountain Asia [J]. Science Bulletin, 2023, 68(1): 43-47. DOI: 10.1016/j.scib.2022.12.004
[12] KRAAIJENBRINK P D A, BIERKENS M F P, LUTZ A F, et al. Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers [J]. Nature, 2017, 549(7671): 257-260. DOI: 10.1038/nature23878
[13] MILES E, MCCARTHY M, DEHECQ A, et al. Health and sustainability of glaciers in High Mountain Asia [J]. Nature Communications, 2021, 12(1): 2868. DOI: 10.1038/s41467-021-23073-4
[14] NIE Yong, PRITCHARD H D, LIU Qiao, et al. Glacial change and hydrological implications in the Himalaya and Karakoram [J]. Nature Reviews Earth & Environment, 2021, 2(2): 91-106. DOI: 10.1038/s43017-020-00124-w
[15] 姚檀栋, 邬光剑, 徐柏青, 等.“亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209. [YAO Tandong, WU Guangjian, XU Baiqing, et al. Asian water tower change and its impacts [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203-1209] DOI: 10.16418/j.issn.1000-3045.2019.11.003
[16] FUGGER S, FYFFE C L, FATICHI S, et al. Understanding monsoon controls on the energy and mass balance of glaciers in the Central and Eastern Himalaya [J]. The Cryosphere, 2022, 16(5): 1631-1652. DOI: 10.5194/tc-16-1631-2022
[17] BOLCH T, KULKARNI A, KÄÄB A, et al. The state and fate of Himalayan glaciers [J]. Science, 2012, 336(6079): 310-314. DOI: 10.1126/science.1215828
[18] KÄÄB A, BERTHIER E, NUTH C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas [J]. Nature, 2012, 488(7412): 495-498. DOI: 10.1038/nature11324
[19] MAURER J M, SCHAEFER J M, RUPPER S, et al. Acceleration of ice loss across the Himalayas over the past 40 years [J]. Science Advances, 2019, 5(6): eaav7266. DOI: 10.1126/sciadv.aav7266
[20] AZAM M F, KARGEL J S, SHEA J M, et al. Glaciohydrology of the Himalaya-Karakoram [J]. Science, 2021, 373(6557): eabf3668. DOI: 10.1126/science.abf3668
[21] YAO Tandong, BOLCH T, CHEN Deliang, et al. The imbalance of the Asian water tower [J]. Nature Reviews Earth & Environment, 2022, 3(10): 618-632. DOI: 10.1038/s43017-022-00299-4
[22] ROUNCE D R, HOCK R, SHEAN D E. Glacier mass change in High Mountain Asia through 2100 using the open-source python glacier evolution model(PyGEM)[J]. Frontiers in Earth Science, 2020, 7: 331. DOI: 10.3389/feart.2019.00331
[23] RGI Consortium. Randolph glacier inventory: A dataset of global glacier outlines: Version 6.0: Technical report [DB]. Global Land Ice Measurements from Space, 2017. DOI: 10.7265/4M1F-GD79
[24] ROUNCE D R, HOCK R, MAUSSION F, et al. Global PyGEM-OGGM glacier projections with RCP and SSP scenarios, version 1 [DB]. NASA National Snow and Ice Data Center Distributed Active Archive Center, 2022. DOI: 10.5067/P8BN9VO9N5C7
[25] WOODWARD J, SHARP M, ARENDT A. The influence of superimposed-ice formation on the sensitivity of glacier mass balance to climate change [J]. Annals of Glaciology, 1997, 24: 186-190. DOI: 10.3189/S0260305500012155
[26] RADIC' V, HOCK R. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise [J]. Nature Geoscience, 2011, 4(2): 91-94. DOI: 10.1038/ngeo1052
[27] ROUNCE D R, HOCK R, MAUSSION F, et al. Global glacier change in the 21st century: Every increase in temperature matters [J]. Science, 2023, 379(6627): 78-83. DOI: 10.1126/science.abo1324
[28] ROUNCE D R, HOCK R, MCNABB R W, et al. Distributed global debris thickness estimates reveal debris significantly impacts glacier mass balance [J]. Geophysical Research Letters, 2021, 48: e2020GL091311. DOI: 10.1029/2020GL091311
[29] WANG Shengjie, ZHANG Mingjun, PEPIN N C, et al. Recent changes in freezing level heights in High Asia and their impact on glacier changes [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(4): 1753-1765. DOI: 10.1002/2013JD020490
[30] 段克勤, 姚檀栋, 王宁练, 等. 21世纪亚洲高山区冰川平衡线高度变化及冰川演化趋势[J]. 中国科学: 地球科学, 2022, 52(8): 1603-1612. [DUAN Keqin, YAO Tandong, WANG Ninglian, et al. Changes in equilibrium-line altitude and implications for glacier evolution in the Asian high mountains in the 21st century [J]. Science China Earth Sciences, 2022, 52(8): 1603-1612] DOI: 10.1360/SST e-2021-0330
[31] HUANG Lei, HOCK R, LI Xin, et al. Winter accumulation drives the spatial variations in glacier mass balance in High Mountain Asia [J]. Science Bulletin, 2022, 67(19): 1967-1970. DOI: 10.1016/j.scib.2022.08.019
[32] KRAAIJENBRINK P D A, STIGTER E E, YAO Tandong, et al. Climate change decisive for Asia's snow meltwater supply [J]. Nature Climate Change, 2021, 11(7): 591-597. DOI: 10.1038/s41558-021-01074-x
[33] JOUBERTON A, SHAW T E, MILES E, et al. Warming-induced monsoon precipitation phase change intensifies glacier mass loss in the southeastern Tibetan Plateau [J]. Proceedings of the National Academy of Sciences, 2022, 119(37): e2109796119. DOI: 10.1073/pnas.2109796119
[34] SCHERLER D, WULF H, GORELICK N. Global assessment of supraglacial debris cover extents [J]. Geophysical Research Letters, 2018, 45(21): 11798-11805. DOI: 10.1029/2018GL080158
[35] AZAM M F, WAGNON P, BERTHIER E, et al. Review of the status and mass changes of Himalayan-Karakoram glaciers [J]. Journal of Glaciology, 2018, 64(243): 61-74. DOI: 10.1017/jog.2017.86
[36] LIAQAT M U, RANZI R. Distributed modelling of snow and ice melt in the Naltar Catchment, Upper Indus Basin [J]. Journal of Hydrology, 2024, 643: 131935. DOI: 10.1016/j.jhydrol.2024.131935
[37] HAN Juntai, LIU Ziwei, WOODS R, et al. Streamflow seasonality in a snow-dwindling world [J]. Nature, 2024, 629(8014): 1075-1081. DOI: 10.1038/s41586-024-07299-y
[38] HIRABAYASHI Y, KANAE S, EMORI S, et al. Global projections of changing risks of floods and droughts in a changing climate [J]. International Association of Scientific Hydrology Bulletin, 2008, 53(4): 754-772. DOI: 10.1623/hysj.53.4.754
[39] WEN Shanshan, WANG Anqian, TAO Hui, et al. Population exposed to drought under the 1.5 C and 2.0 C warming in the Indus River Basin [J]. Atmospheric Research, 2019, 218: 296-305. DOI: 10.1016/j.atmosres.2018.12.003
[40] IMMERZEEL W W, VAN BEEK L P H, BIERKENS M F P. Climate change will affect the Asian water towers [J]. Science, 2010, 328(5984): 1382-1385. DOI: 10.1126/science.1183188
[41] NIE Yong, DENG Qian, PRITCHARD H D, et al. Glacial lake outburst floods threaten Asia's infrastructure [J]. Science Bulletin, 2023, 68(13): 1361-1365. DOI: 10.1016/j.scib.2023.05.035

相似文献/References:

[1]郑本兴,马秋华.贡嘎山区全新世冰川变化与泥石流发育的关系[J].山地学报,1994,(01):1.
[2]何毅,杨太保,冀琴,等.基于遥感资料的中亚阿拉套地区冰川变化及动因分析[J].山地学报,2015,(02):148.
 HE Yi,YANG Taibao,JI Qin.Glacier Variation and Motivation Based on Remote Sensing Data in the Central Asia Alatau Regions[J].Mountain Research,2015,(2):148.
[3]李成秀,杨太保,田洪阵,等.近40年来西昆仑山冰川及冰湖变化与气候因素[J].山地学报,2015,(02):157.
 LI Chengxiu,YANG Taibao,TIAN Hongzhen.Variation of Western Kunlun Mountain Glaciers Monitored by Remote Sensing during 1976—2010[J].Mountain Research,2015,(2):157.
[4]姬鑫慧,叶庆华*,聂 维,等.基于TerraSAR/TanDEM-X监测岗日嘎布山脉东南段冰川冰面高程变化(2000—2014)[J].山地学报,2021,(5):631.[doi:10.16089/j.cnki.1008-2786.000626)]
 JI Xinhui,YE Qinghua*,NIE Wei,et al.Glacier Surface Elevation Change in Southeastern Mt. Kangri Karpo on Tibet during 2000—2014 Based on TerraSAR/TanDEM-X Data[J].Mountain Research,2021,(2):631.[doi:10.16089/j.cnki.1008-2786.000626)]

备注/Memo

备注/Memo:
收稿日期(Received date): 2024-11-10; 改回日期(Accepted date):2025- 03-11
基金项目(Foundation item): 国家自然科学基金(42371137)。[National Natural Science Foundation of China(42371137)]
作者简介(Biography): 姜佳佳(2001-),女,陕西榆林人,硕士研究生,主要研究方向:气候变化与冰冻圈可持续发展。[JIANG Jiajia(2001-), female, born in Yulin, Shaanxi Province, M.Sc. candidate, research on climate change and sustainable development of the cryosphere] E-mail:jiangjj@snnu.edu.cn
*通讯作者(Corresponding author): 段克勤(1970-),男,博士,教授,主要研究方向:全球变化。[DUAN Keqin(1970-), male, Ph.D., professor, research on global change] E-mail:kqduan@snnu.edu.cn
更新日期/Last Update: 2025-03-30