参考文献/References:
[1] 李耀军, 丁永建, 上官冬辉, 等. 1961-2016年全球变暖背景下冰川物质亏损加速度研究[J]. 中国科学: 地球科学, 2021, 51(3): 453-464. [LI Yaojun, DING Yongjian, SHANGGUAN Donghui, et al. Climate-driven acceleration of glacier mass loss on global and regional scales during 1961-2016 [J]. Science China Earth Sciences, 2021, 51(3): 453-464] DOI: 10.1360/N072020-0189
[2] HUGONNET R, MCNABB R, BERTHIER E, et al. Accelerated global glacier mass loss in the early twenty-first century [J]. Nature, 2021, 592(7856): 726-731. DOI: 10.1038/s41586-021-03436-z
[3] LEE E, CARRIVICK J L, QUINCEY D J, et al. Accelerated mass loss of Himalayan glaciers since the Little Ice Age [J]. Scientific Reports, 2021, 11(1): 24284. DOI: 10.1038/s41598-021-03805-8
[4] YAO Tandong, THOMPSON L, YANG Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings [J]. Nature Climate Change, 2012, 2(9): 663-667. DOI: 10.1038/nclimate1580
[5] LUTZ A F, IMMERZEEL W W, SHRESTHA A B, et al. Consistent increase in High Asia's runoff due to increasing glacier melt and precipitation [J]. Nature Climate Change, 2014, 4(7): 587-592. DOI: 10.1038/nclimate2237
[6] HUSS M, HOCK R. Global-scale hydrological response to future glacier mass loss [J]. Nature Climate Change, 2018, 8(2): 135-140. DOI: 10.1038/s41558-017-0049-x
[7] LIU Wenhui, XIE Changwei, ZHAO Lin, et al. Dynamic changes in lakes in the Hoh Xil region before and after the 2011 outburst of Zonag Lake [J]. Journal of Mountain Science, 2019, 16(5): 1098-1110. DOI: 10.1007/s11629-018-5085-0
[8] ALI S, HAIDER R, ABBAS W, et al. Empirical assessment of rockfall and debris flow risk along the Karakoram Highway, Pakistan [J]. Natural Hazards, 2021, 106: 2437-2460. DOI: 10.1007/s11069-021-04549-4
[9] 段克勤, 姚檀栋, 石培宏, 等.青藏高原东部冰川平衡线高度的模拟及预测[J]. 中国科学: 地球科学, 2017, 47(1): 104-113. [DUAN Keqin, YAO Tandong, SHI Peihong, et al. Simulation and prediction of equilibrium line altitude of glaciers in the eastern Tibetan Plateau [J]. Science China Earth Sciences, 2017, 47(1): 104-113] DOI: 10.1360/N072016-00062
[10] 段克勤, 石培宏, 何锦屏.山地冰川变化的数值模拟及其在亚洲高山区的应用[J]. 冰川冻土, 2022, 44(3): 753-761. [DUAN Keqin, SHI Peihong, HE Jinping. Numerical simulations of mountain glacial changes and its application in Asian High Mountains [J]. Journal of Glaciology and Geocryology, 2022, 44(3): 753-761] DOI: 10.7522/j.issn.1000-0240.2022.0074
[11] ZHAO Hongyu, SU Bo, LEI Huajin, et al. A new projection for glacier mass and runoff changes over High Mountain Asia [J]. Science Bulletin, 2023, 68(1): 43-47. DOI: 10.1016/j.scib.2022.12.004
[12] KRAAIJENBRINK P D A, BIERKENS M F P, LUTZ A F, et al. Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers [J]. Nature, 2017, 549(7671): 257-260. DOI: 10.1038/nature23878
[13] MILES E, MCCARTHY M, DEHECQ A, et al. Health and sustainability of glaciers in High Mountain Asia [J]. Nature Communications, 2021, 12(1): 2868. DOI: 10.1038/s41467-021-23073-4
[14] NIE Yong, PRITCHARD H D, LIU Qiao, et al. Glacial change and hydrological implications in the Himalaya and Karakoram [J]. Nature Reviews Earth & Environment, 2021, 2(2): 91-106. DOI: 10.1038/s43017-020-00124-w
[15] 姚檀栋, 邬光剑, 徐柏青, 等.“亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209. [YAO Tandong, WU Guangjian, XU Baiqing, et al. Asian water tower change and its impacts [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203-1209] DOI: 10.16418/j.issn.1000-3045.2019.11.003
[16] FUGGER S, FYFFE C L, FATICHI S, et al. Understanding monsoon controls on the energy and mass balance of glaciers in the Central and Eastern Himalaya [J]. The Cryosphere, 2022, 16(5): 1631-1652. DOI: 10.5194/tc-16-1631-2022
[17] BOLCH T, KULKARNI A, KÄÄB A, et al. The state and fate of Himalayan glaciers [J]. Science, 2012, 336(6079): 310-314. DOI: 10.1126/science.1215828
[18] KÄÄB A, BERTHIER E, NUTH C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas [J]. Nature, 2012, 488(7412): 495-498. DOI: 10.1038/nature11324
[19] MAURER J M, SCHAEFER J M, RUPPER S, et al. Acceleration of ice loss across the Himalayas over the past 40 years [J]. Science Advances, 2019, 5(6): eaav7266. DOI: 10.1126/sciadv.aav7266
[20] AZAM M F, KARGEL J S, SHEA J M, et al. Glaciohydrology of the Himalaya-Karakoram [J]. Science, 2021, 373(6557): eabf3668. DOI: 10.1126/science.abf3668
[21] YAO Tandong, BOLCH T, CHEN Deliang, et al. The imbalance of the Asian water tower [J]. Nature Reviews Earth & Environment, 2022, 3(10): 618-632. DOI: 10.1038/s43017-022-00299-4
[22] ROUNCE D R, HOCK R, SHEAN D E. Glacier mass change in High Mountain Asia through 2100 using the open-source python glacier evolution model(PyGEM)[J]. Frontiers in Earth Science, 2020, 7: 331. DOI: 10.3389/feart.2019.00331
[23] RGI Consortium. Randolph glacier inventory: A dataset of global glacier outlines: Version 6.0: Technical report [DB]. Global Land Ice Measurements from Space, 2017. DOI: 10.7265/4M1F-GD79
[24] ROUNCE D R, HOCK R, MAUSSION F, et al. Global PyGEM-OGGM glacier projections with RCP and SSP scenarios, version 1 [DB]. NASA National Snow and Ice Data Center Distributed Active Archive Center, 2022. DOI: 10.5067/P8BN9VO9N5C7
[25] WOODWARD J, SHARP M, ARENDT A. The influence of superimposed-ice formation on the sensitivity of glacier mass balance to climate change [J]. Annals of Glaciology, 1997, 24: 186-190. DOI: 10.3189/S0260305500012155
[26] RADIC' V, HOCK R. Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise [J]. Nature Geoscience, 2011, 4(2): 91-94. DOI: 10.1038/ngeo1052
[27] ROUNCE D R, HOCK R, MAUSSION F, et al. Global glacier change in the 21st century: Every increase in temperature matters [J]. Science, 2023, 379(6627): 78-83. DOI: 10.1126/science.abo1324
[28] ROUNCE D R, HOCK R, MCNABB R W, et al. Distributed global debris thickness estimates reveal debris significantly impacts glacier mass balance [J]. Geophysical Research Letters, 2021, 48: e2020GL091311. DOI: 10.1029/2020GL091311
[29] WANG Shengjie, ZHANG Mingjun, PEPIN N C, et al. Recent changes in freezing level heights in High Asia and their impact on glacier changes [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(4): 1753-1765. DOI: 10.1002/2013JD020490
[30] 段克勤, 姚檀栋, 王宁练, 等. 21世纪亚洲高山区冰川平衡线高度变化及冰川演化趋势[J]. 中国科学: 地球科学, 2022, 52(8): 1603-1612. [DUAN Keqin, YAO Tandong, WANG Ninglian, et al. Changes in equilibrium-line altitude and implications for glacier evolution in the Asian high mountains in the 21st century [J]. Science China Earth Sciences, 2022, 52(8): 1603-1612] DOI: 10.1360/SST e-2021-0330
[31] HUANG Lei, HOCK R, LI Xin, et al. Winter accumulation drives the spatial variations in glacier mass balance in High Mountain Asia [J]. Science Bulletin, 2022, 67(19): 1967-1970. DOI: 10.1016/j.scib.2022.08.019
[32] KRAAIJENBRINK P D A, STIGTER E E, YAO Tandong, et al. Climate change decisive for Asia's snow meltwater supply [J]. Nature Climate Change, 2021, 11(7): 591-597. DOI: 10.1038/s41558-021-01074-x
[33] JOUBERTON A, SHAW T E, MILES E, et al. Warming-induced monsoon precipitation phase change intensifies glacier mass loss in the southeastern Tibetan Plateau [J]. Proceedings of the National Academy of Sciences, 2022, 119(37): e2109796119. DOI: 10.1073/pnas.2109796119
[34] SCHERLER D, WULF H, GORELICK N. Global assessment of supraglacial debris cover extents [J]. Geophysical Research Letters, 2018, 45(21): 11798-11805. DOI: 10.1029/2018GL080158
[35] AZAM M F, WAGNON P, BERTHIER E, et al. Review of the status and mass changes of Himalayan-Karakoram glaciers [J]. Journal of Glaciology, 2018, 64(243): 61-74. DOI: 10.1017/jog.2017.86
[36] LIAQAT M U, RANZI R. Distributed modelling of snow and ice melt in the Naltar Catchment, Upper Indus Basin [J]. Journal of Hydrology, 2024, 643: 131935. DOI: 10.1016/j.jhydrol.2024.131935
[37] HAN Juntai, LIU Ziwei, WOODS R, et al. Streamflow seasonality in a snow-dwindling world [J]. Nature, 2024, 629(8014): 1075-1081. DOI: 10.1038/s41586-024-07299-y
[38] HIRABAYASHI Y, KANAE S, EMORI S, et al. Global projections of changing risks of floods and droughts in a changing climate [J]. International Association of Scientific Hydrology Bulletin, 2008, 53(4): 754-772. DOI: 10.1623/hysj.53.4.754
[39] WEN Shanshan, WANG Anqian, TAO Hui, et al. Population exposed to drought under the 1.5 C and 2.0 C warming in the Indus River Basin [J]. Atmospheric Research, 2019, 218: 296-305. DOI: 10.1016/j.atmosres.2018.12.003
[40] IMMERZEEL W W, VAN BEEK L P H, BIERKENS M F P. Climate change will affect the Asian water towers [J]. Science, 2010, 328(5984): 1382-1385. DOI: 10.1126/science.1183188
[41] NIE Yong, DENG Qian, PRITCHARD H D, et al. Glacial lake outburst floods threaten Asia's infrastructure [J]. Science Bulletin, 2023, 68(13): 1361-1365. DOI: 10.1016/j.scib.2023.05.035