[1]李树武,张 妮*,刘奇葩.基于雨洪法和水土混合法的泥石流特征参数确定——以宁夏东湾沟为例[J].山地学报,2025,(2):235-244.[doi:10.16089/j.cnki.1008-2786.000889]
 LI Shuwu,ZHANG Ni*,LIU Qipa.Mixing Method: A Case Study of the Dongwangou Gully, China[J].Mountain Research,2025,(2):235-244.[doi:10.16089/j.cnki.1008-2786.000889]
点击复制

基于雨洪法和水土混合法的泥石流特征参数确定——以宁夏东湾沟为例()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第2期
页码:
235-244
栏目:
山地灾害
出版日期:
2025-06-25

文章信息/Info

Title:
Mixing Method: A Case Study of the Dongwangou Gully, China
文章编号:
1008-2786-(2025)2-235-10
作者:
李树武1张 妮2*刘奇葩2
(1.中国电建集团西北勘测设计研究院有限公司,西安 710065; 2.西安交通大学 人居环境与建筑工程学院,西安 710049)
Author(s):
LI Shuwu1 ZHANG Ni2* LIU Qipa2
(1. Northwest Engineering Corporation Limited, Xi'an 710065, China; 2. School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China)
关键词:
泥石流特征参数 雨洪法 水土混合法 东湾沟
Keywords:
debris flow characteristic parameters rain-flood method soil-water mixing method the Dongwangou gully
分类号:
P642.5
DOI:
10.16089/j.cnki.1008-2786.000889
文献标志码:
A
摘要:
泥石流特征参数(体积、流速等)的准确量化是防治工程设计的关键依据,直接影响工程方案的科学性与经济性。中国山区重大工程勘察中,普遍依赖形态调查法或雨洪法确定泥石流防治工程核心设计参数,常造成结构设计冗余或防灾能力不足。本文以宁夏东湾沟为典型案例区,通过雨洪法与水土混合法的对比研究,系统揭示不同方法在泥石流参数计算中的差异性及其工程影响机制。研究结果表明:(1)在固体体积浓度、冲出物质总量及运动速度等关键参数的计算中,雨洪法因其静态评价特性,在物源匮乏区域呈现显著偏差(偏差高达 50%~100%),易导致防治工程出现“过度设计”(拦挡坝规模冗余)或“标准不足”(排导槽过流能力低估)问题; 水土混合法通过动态模拟泥石流启动-运移-堆积全过程,能更精准捕捉固体体积浓度时空分布、峰值流速等关键参数,其评价结果与传统方法相比偏差降低约23%~64%。(2)两种方法定量对比表明,单一评价范式易忽略物源空间异质性(沟道储量与崩滑体贡献差异)和降雨阈值动态响应,导致工程参数可靠性不足。本研究提出重大工程勘察应采用多方法协同验证体系,特别推荐集成地形三维解析、物源动态监测与降雨时空分布的多要素耦合模型,可以为提升工程安全与经济合理性提供科学支撑。
Abstract:
Accurate quantification of debris flow characteristic parameters(e.g., volume, velocity)build a solid foundation for designing effective debris flow control engineering, directly influencing the scientificity and cost-efficiency of engineering solutions. In most Chinese cases of engineering surveys for debris flow control projects, design parameters were determined by empirical approaches such as morphological investigation or rain-flood methods, which quite often resulted in either structural redundancy or inadequate disaster prevention resilience.
In this study, it selected the Dongwan gully, located at Beichangtan Village, Zhongwei County, Ningxia Hui Autonomous Region, China as a representative case to conduct a comparative analysis between rain-flood method(RFM)and soil-water mixing model(SWMM). Then discrepancies in parameter calculation by the two methods with engineering implications were systematically elucidated.
(1)It found in the determination of design parameters such as solid volume concentration, total debris flow discharge and kinematic velocity, RFM constrained by its static assessment framework—exhibited substantial deviations(discrepancies ranging from 50%-100% as referred to field observations)in source materials scarce areas, resulting in engineering pitfalls like overdesign(e.g., oversized check dams)or substandard(e.g., undersize drainage channel)debris flow control structure. In contrast, SWMM dynamically simulated debris flow initiation, transportation and deposition processes, achieving enhanced precision in capturing spatiotemporal variations in solid volume concentration and peak velocity, with discrepancies reduced by approximately 23%-64% compared to conventional methods, including RFM.
(2)By quantitative comparisons, it confirmed singular evaluation paradigms overlook spatial heterogeneity in source materials(e.g., source materials storage in channel versus from landslide feeds)and dynamic rainfall threshold responses, thereby undermining parameter reliability.
This study advocates for the adoption of a multi-method collaborative verification framework in major engineering surveys, particularly emphasizing the integration of 3D terrain analysis, real-time source materials monitoring, and spatiotemporal rainfall distribution modelling. This approach enhances both engineering safety and cost-effectiveness.

参考文献/References:

[1] HU Guisheng, ZHAO Chunyao, CHEN Ningsheng, et al. Characteristics, mechanisms and prevention modes of debris flows in an arid seismically active region along the Sichuan-Tibet railway route, China: A case study of the Basu-Ranwu section, southeastern Tibet [J]. Environmental Earth Sciences, 2019, 78(18): 564. DOI: 10.1007/s12665-8554-z
[2] CUI Peng, GE Yonggang, LI Shaojun, et al. Scientific challenges in disaster risk reduction for the Sichuan-Tibet railway [J]. Engineering Geology, 2022, 309: 106837. DOI: 10.1016/j.enggeo.2022.106837
[3] 石振明, 吴彬, 郑鸿超, 等. 泥石流防治措施与冲击力研究进展[J]. 地球科学, 2022, 47(12): 4339-4349. [SHI Zhenming, WU Bin, ZHENG Hongchao, et al. State of the art on prevention and control measures and impact model for debris flow [J]. Earth Science, 2022, 47(12): 4339-4349] DOI: 10.3799/dqkx.2022.376
[4] 侯儒宁, 李志, 陈宁生, 等. 基于流域单元和堆叠集成模型的天山地区泥石流易发性评估建模[J]. 地球科学, 2023, 48(5): 1892-1907. [HOU Runing, LI Zhi, CHEN Ningsheng, et al. Modeling of debris flow susceptibility assessment in Tianshan based on watershed unit and stacking ensemble algorithm [J]. Earth Science, 2023, 48(5): 1892-1907] DOI: 10.3799/dqkx.2022.271
[5] 崔鹏, 杨坤, 朱颖彦, 等. 西部山区交通线路的泥石流灾害及减灾对策[J]. 山地学报, 2004, 22(3): 326-331. [CUI Peng, YANG Kun, ZHU Yingyan, et al. Debris flow hazards along the traffic lines in mountain areas of western China [J]. Mountain Research, 2004, 22(3): 326-331] DOI: 10.16089/j.cnki.1008-2786.2004.03.012
[6] 胡凯衡, 崔鹏, 葛永刚. 舟曲8.8特大泥石流对建筑物的破坏形式[J]. 山地学报, 2012, 30(4): 484-490. [HU Kaiheng, CUI Peng, GE Yonggang. Building destruction patterns by August 8, 2010 debris flow in Zhouqu, western China [J]. Mountain Research, 2012, 30(4): 484-490] DOI: 10.16089/j.cnki.1008-2786.2012.04.020
[7] XU Qiang, ZHANG Shuai, LI Weile, et al. The 13 August 2010 catastrophic debris flows after the 2008 Wenchuan earthquake, China [J]. Natural Hazards and Earth System Sciences, 2012, 12: 201-216. DOI: 10.5194/nhess-12-201-2012
[8] TANG Chuan, VAN ASCH T W J, CHANG Ming, et al. Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: The combined effects of a strong earthquake and subsequent rainstorms [J]. Geomorphology, 2012, 139-140: 559-576. DOI: 10.1016/j.geomorph.2011.12.021
[9] YU Bin, MA Yu, WU Yufu. Case study of a giant debris flow in the Wenjia gully, Sichuan province, China [J]. Natural Hazards, 2013, 65: 835-849. DOI: 10.1007/s11069-012-0395-y
[10] FAN Xuanmei, SCARINGI G, KORUP O, et al. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts [J]. Reviews of Geophysics, 2019, 57: 421-503. DOI: 10.1029/2018RG000626
[11] 曲瑞, 李仲先, 何政伟, 等. 甘肃天水大沟短时强降水诱发低频泥石流特征及成因[J]. 山地学报, 2018, 36(3): 488-495. [QU Rui, LI Zhongxian, HE Zhengwei, et al. Characteristics and causes of low frequency debris flow induced by heavy rainfall in Dagou village, Tianshui city, Gansu province, China [J]. Mountain Research, 2018, 36(3): 488-495] DOI: 10.16089/j.cnki.1008-2786.000345
[12] 龚兴隆, 陈昆廷, 陈晓清, 等. 则查洼沟“8.4”泥石流灾害成因分析[J]. 中国水土保持科学, 2020, 18(5): 96-103. [GONG Xinglong, CHEN Kunting, CHEN Xiaoqing, et al. On the causes of “8.4”debris flow disaster at Zechawa Gully [J]. Science of Soil and Water Conservation, 2020, 18(5): 96-103] DOI: 10.16843/j.sswc.2020.05.012
[13] 宋志, 巴仁基, 刘宇杰. 磨西河特大型泥石流堵塞大渡河分析—以一次泥石流规模、不同频率雨洪法流量定量计算[J]. 灾害学, 2010, 25(2): 73-75. [SONG Zhi, BA Renji, LIU Yujie. Analysis on block of the Dadu river by a giant debris flow of Moxi River-quantitative calculation of scale of a debris flow and flows of different frequencies by rain-flood method [J]. Journal of Catastrophology, 2010, 25(2): 73-75] DOI: 10.3969/j.issn.1000-811X.2010.02.015
[14] 游勇, 柳金峰, 陈兴长. “5·12”汶川地震后北川苏保河流域泥石流危害及特征[J]. 山地学报, 2010, 28(3): 358-366. [YOU Yong, LIU Jinfeng, CHEN Xingchang. Debris flow and its characteristics of Subao River in Beichuan county after “5·12” Wenchuan earthquake [J]. Mountain Research, 2010, 28(3): 358-366] DOI: 10.16089/j.cnki.1008-2786.2010.03.008
[15] 王喜安, 陈剑刚, 陈华勇, 等. 考虑浆体黏度的泥石流流速计算方法[J]. 长江科学院院报, 2020, 37(4): 56-61. [WANG Xi'an, CHEN Jiangang, CHEN Huayong, et al. Calculation of debris flow velocity in consideration of viscosity of slurry [J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(4): 56-61] DOI: 10.11988/ckyyb.20181354
[16] O'BRIEN J S, JULIEN P Y, FULLERTON W T. Two-dimensional water flood and mudflow simulation [J]. Journal of Hydraulic Engineering, 1993: 244-261. DOI: 10.1061/(ASCE)0733-9429(1993)119:2(244)
[17] BEGUERIA S, VAN ASCH T W J, MALET J P. A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain [J]. Natural Hazards and Earth System Science, 2009, 9(6): 1897-1909. DOI: 10.5194/nhess-9-1897-2009
[18] HUNGR O. A model for the run out analysis of rapid flow slides, debris flows, and avalanches [J]. Canadian Geotechnical Journal, 1995, 32(4): 610-623. DOI: 10.1139/t95-06
[19] OUYANG Chaojun, ZHOU Kaiqi, XU Qiang, et al. Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China [J]. Landslides, 2017, 14(2): 705-718. DOI: 10.1007/s10346-016-0764-9
[20] ZHANG Ni, MATSUSHIMA T. Simulation of rainfall-induced debris flow considering material entrainment [J]. Engineering Geology, 2016, 214: 107-115. DOI: 10.1016/j.enggeo.2016.10.005
[21] 刘瑾莹. 宁夏中卫市沙坡头区地质灾害调查与评价[D]. 北京: 中国地质大学(北京), 2018: 1-56. [LIU Jinying. Investigation and evaluation of geological disasters in Shapotou district, Zhongwei city, Ningxia [D]. Beijing: China University of Geosciences(Beijing), 2018: 1-56]
[22] ZHANG Ni, SUN Qing, YANG Zongji. Exportation of coseismic deposits in areas affected by the Wenchuan earthquake [J]. Landslides, 2022, 19: 1199-1207. DOI: 10.1007/s10346-021-01826-y
[23] ZHANG Shucheng. A comprehensive approach to the observation and prevention of debris flows in China [J]. Natural Hazards, 1993, 7: 1-23. DOI: 10.1007/BF00595676

备注/Memo

备注/Memo:
收稿日期(Received date): 2024-10-12; 改回日期(Accepted date): 2025- 04-15
基金项目(Foundation item): 青海省基础研究计划项目(2024-ZJ-904)。[Basic Research Program of Qinghai Province(2024-ZJ-904)]
作者简介(Biography): 李树武(1973-),男,甘肃白银人,博士,主要研究方向:地质灾害。[LI Shuwu(1973-), male, born in Baiyin, Gansu, Ph.D., research on geo-hazards] E-mail: lishuwu@nwh.cn
*通讯作者(Corresponding author): 张妮(1986-),女,博士,主要研究方向:地质灾害。[ZHANG Ni(1986-), female, Ph.D., research on geo-hazards] E-mail: nizhang961228@xjtu.edu.cn
更新日期/Last Update: 2025-03-30