[1]梁正钟,安会聪,谢 涛,等.泥石流基底阻力模型的选择及模型适用性[J].山地学报,2025,(2):245-255.[doi:10.16089/j.cnki.1008-2786.000890]
 LIANG Zhengzhong,AN Huicong,XIE Tao,et al.Selection and Applicability of Base Resistance Models for Debris Flow Travelling[J].Mountain Research,2025,(2):245-255.[doi:10.16089/j.cnki.1008-2786.000890]
点击复制

泥石流基底阻力模型的选择及模型适用性()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第2期
页码:
245-255
栏目:
山地灾害
出版日期:
2025-06-25

文章信息/Info

Title:
Selection and Applicability of Base Resistance Models for Debris Flow Travelling
文章编号:
1008-2786-(2025)2-245-11
作者:
梁正钟12安会聪2谢 涛1杨维斌2欧阳朝军2*
(1.重庆交通大学 河海学院,重庆 400074; 2.中国科学院、水利部成都山地灾害与环境研究所,成都 610213)
Author(s):
LIANG Zhengzhong12 AN Huicong2 XIE Tao1 YANG Weibin2 OUYANG Chaojun2*
(1. The College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Resources, Chengdu 610213, China)
关键词:
泥石流 基底阻力模型 Massflow
Keywords:
debris flow base resistance models massflow
分类号:
P642
DOI:
10.16089/j.cnki.1008-2786.000890
文献标志码:
A
摘要:
在泥石流动力学研究领域,合理选取基底阻力模型至关重要。受泥石流多相介质运动机理复杂性的影响,基底阻力模型及其参数的合理性直接决定数值模拟结果的可靠性。本研究基于Massflow地表过程动力学模拟软件,自定义构建五种在深度积分连续介质力学模型里普遍应用的基底阻力模型,即库仑模型、组合模型、Bingham模型、固液耦合模型以及沃伊勒米模型,结合实验验证手段与数值模拟的方法,对比基底阻力模型在泥石流动力学特性方面的表现。通过粘性体溃决过程实验、美国地质调查局(USGS)大型泥石流水槽实验以及四川省凉山州黄泥巴沟泥石流这三个案例,从实验室规模到实际灾害场景验证了各模型的有效性。结果表明:(1)在实验对比方面,固液耦合模型、沃伊勒米模型、组合模型在流深、流速等动力学参数的模拟精度上较传统库伦模型和宾汉模型提升30%~40%。(2)在真实泥石流灾害对比中,固液耦合模型在实际案例中表现最优(相对误差<10%),其优势源于充分考虑固液两相参数以及相互作用力,而库伦模型因未考虑液相作用导致模拟结果误差高达47.3%。本研究建立了基底阻力模型选择与泥石流运动特征模拟精度之间的定量关联,可以为泥石流灾害的动力学建模、风险评估及工程防护提供理论基础和技术支持。
Abstract:
In the field of debris flow dynamics research, it is crucial to select a reasonable base resistance model. Given the complexity of the motion mechanism of debris flow multiphase medium, the rationality of base resistance models and their parameters directly determines the reliability of numerical simulation results.
This study is based on the massflow surface process dynamics simulation software, and custom constructs five commonly used base resistance models in deep integration continuous medium mechanics models, namely Coulomb model, combination model, Bingham model, solid-liquid coupling model, and Vailemi model. By combining experimental verification methods with numerical simulation methods, the performance of base resistance models in debris flow dynamics characteristics is compared. The effectiveness of each model was verified through the analysis of three cases: the experiment of viscous body collapse process, the large-scale debris flow flume experiment of the United States Geological Survey(USGS), and the Huangnibagou debris flow event in Muli County, Liangshan Prefecture, Sichuan Province, from laboratory scale to actual disaster scenarios.
(1)In terms of experimental comparison, solid-liquid coupling model, Voellmy model, and the composite model improve the simulation accuracy of dynamic parameters such as flow depth and velocity by 30%-40% compared to the traditional Coulomb and Bingham models.
(2)In comparisons with actual debris flow occurrences, the solid-liquid coupling model performs best in real-world cases(relative error <10%). Its advantage stems from fully considering the parameters of solid-liquid two-phase and interaction forces, while the Coulomb model failure to consider liquid-phase interactions resulted in a simulation error of up to 47.3%.
This article can provide reference for selecting appropriate base resistance models in numerical simulation of debris flow movement, and provide technical support for risk assessment and prevention of debris flow disasters.

参考文献/References:

[1] SAVAGE S B, HUTTER K. The motion of a finite mass of granular material down a rough incline [J]. Journal of Fluid Mechanics, 1989, 199: 177-215. DOI: 10.1017/S0022112089000340
[2] OUYANG Chaojun, HE Siming, XU Qiang, et al. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain [J]. Computers & Geosciences, 2013, 52: 1-10. DOI: 10.1016/j.cageo.2012.08.024
[3] 崔鹏, 唐金波, 林鹏智. 泥石流运动阻力特性及其研究进展[J]. 四川大学学报(工程科学版), 2016, 48(3): 1-11. [CUI Peng, TANG Jinbo, LIN Pengzhi. Research progress of resistance character of debris-flow [J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(3): 1-11] DOI: 10.15961/j.jsuese.2016.03.001
[4] 李彦稷, 李浦, 胡凯衡. 粘性泥石流龙头形态与阻力模型适用性研究[J]. 山地学报, 2023, 41(2): 216-227. [LI Yanji, LI Pu, HU Kaiheng. The morphology of viscous debris flow head and its dynamic resistance model [J]. Mountain Research, 2023, 41(2): 216-227] DOI: 10.16089/j.cnki.1008-2786.000743
[5] OUYANG Chaojun, ZHOU Kaiqi, XU Qiang, et al. Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China [J]. Landslides, 2017, 14(2): 705-718. DOI: 10.1007/s10346-016-0764-9
[6] HUTTER K, NOHGUCHI Y. Similarity solutions for a Voellmy model of snow avalanches with finite mass [J]. Acta Mechanica, 1990, 82(1): 99-127. DOI: 10.1007/BF01173741
[7] JULIEN P Y, LAN Yongqiang. Rheology of hyperconcentrations [J]. Journal of Hydraulic Engineering, 1991, 117(3): 346-353. DOI: 10.1061/(ASCE)0733-9429(1991)117:3(346)
[8] HAN Zheng, BIN Su, LI Yange, et al. Numerical simulation of debris-flow behavior based on the SPH method incorporating the Herschel-Bulkley-Papanastasiou rheology model [J]. Engineering Geology, 2019, 255: 26-36. DOI: 10.1016/j.enggeo.2019.04.013
[9] LAIGLE D, COUSSOT P. Numerical modeling of mudflows [J]. Journal of Hydraulic Engineering, 1997, 123(7): 617-623. DOI: 10.1061/(ASCE)0733-9429(1997)123:7(617)
[10] BRICKER J D, GIBSON S, TAKAGI H, et al. On the need for larger Manning's roughness coefficients in depth-integrated tsunami inundation models [J]. Coastal Engineering Journal, 2015, 57(2): 1550005. DOI: 10.1142/S0578563415500059
[11] AN Huicong, OUYANG Chaojun, WANG Fulei, et al. Comprehensive analysis and numerical simulation of a large debris flow in the Meilong catchment, China [J]. Engineering Geology, 2022, 298: 106546. DOI: 10.1016/j.enggeo.2022.106546
[12] 张立舟, 王彦琦, 赵文俊, 等. 不同沟底摩阻力工况下泥石流动力学研究[J]. 水文地质工程地质, 2014, 41(4): 113-118. [ZHANG Lizhou, WANG Yanqi, ZHAO Wenjun, et al. Research on the dynamics of debris flow based on different basal resistance conditions [J]. Hydrogeological & Engineering Geology, 2014, 41(4): 113-118] DOI: 10.16030/j.cnki.issn.1000-3665.2014.04.016
[13] 段学良, 马凤山, 郭捷, 等. 基于Massflow模型的西藏仁布杰仲沟泥石流运动特征分析[J]. 中国地质灾害与防治学报, 2019, 30(6): 25-33. [DUAN Xueliang, MA Fengshan, GUO Jie, et al. Movement characteristics of Jiezhonggou debris flow of Renbu, Tibet based on massflow model [J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(6): 25-33] DOI: 10.16031/j.cnki.issn.1003-8035
[14] IVERSON R M, OUYANG Chaojun. Entrainment of bed material by earth-surface mass flows: Review and reformulation of depth-integrated theory [J]. Reviews of Geophysics, 2015, 53(1): 27-58. DOI: 10.1002/2013RG000447
[15] LI Pu, WANG Jiading, HU Kaiheng, et al. Experimental study of debris-flow entrainment over stepped-gradient beds incorporating bed sediment porosity [J]. Engineering Geology, 2020, 274: 105708. DOI: 10.1016/j.enggeo.2020.105708
[16] HUNGR O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches [J]. Canadian Geotechnical Journal, 1995, 32(4): 610-623. DOI: 10.1139/t95-063
[17] NERF D, RICKENMANN D, RUTSCHMANN P, et al. Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model [J]. Natural Hazards and Earth System Sciences, 2006, 6(1): 155-165. DOI: 10.5194/nhess-6-155-2006
[18] IVERSON R M, LOGAN M, LAHUSEN R G, et al. The perfect debris flow? Aggregated results from 28 large‐scale experiments [J]. Journal of Geophysical Research: Earth Surface, 2010, 115: F03005. DOI: 10.1029/2009JF001514
[19] O'BRIEN J S, JULIEN P Y, FULLERTON W T. Two-dimensional water flood and mudflow simulation [J]. Journal of Hydraulic Engineering, 1993, 119(2): 244-261. DOI: 10.1061/(ASCE)0733-9429(1993)119:2(244)
[20] OUYANG Chaojun, XIANG Wen, AN Huicong, et al. Mechanistic analysis and numerical simulation of the 2021 post-fire debris flow in Xiangjiao catchment, China [J]. Journal of Geophysical Research: Earth Surface, 2023, 128(1): e2022JF006846. DOI: 10.1029/2022JF006846

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(2):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(2):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(2):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(2):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(2):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(2):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(2):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(2):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(2):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(2):495.

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 03- 03; 改回日期(Accepted date): 2025- 04-26
基金项目(Foundation item): 国家自然科学基金(42022054); 中国科学院战略先导专项(XDA23090303); 国家资助博士后研究人员计划(GZC20232570)。 [National Nature Science Foundation of China(42022054); Strategic Priority Research Program of CAS(XDA23090303); Postdoctoral Fellowship Program of CPSF(GZC20232570)]
作者简介(Biography): 梁正钟(1998-),男,硕士,主要研究方向:山地灾害数值模拟。[LIANG Zhengzhong(1998-), male, M.Sc., research on numerical simulation of mountain disasters] E-mail: 17471892@qq.com
*通讯作者(Corresponding author): 欧阳朝军(1982-),男,博士,研究员,主要研究方向:山地灾害预警预报。[OUYANG Chaojun(1982-), male, Ph.D. professor of research, research on mountain hazard prediction] E-mail: cjouyang@imde.ac.cn
更新日期/Last Update: 2025-03-30