[1]尹 静,张 博*,富志鹏,等.青藏公路格尔木至那曲段路域水体连通性演变及其距离阈值[J].山地学报,2025,(2):303-320.[doi:10.16089/j.cnki.1008-2786.000894]
 YIN Jing,ZHANG Bo*,FU Zhipeng,et al.Evolution of Waterbody Connectivity in Road-Effect Zone and Its Distance Threshold along the Golmud-Nagqu Section of the Qinghai-Tibet Highway, China[J].Mountain Research,2025,(2):303-320.[doi:10.16089/j.cnki.1008-2786.000894]
点击复制

青藏公路格尔木至那曲段路域水体连通性演变及其距离阈值()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第2期
页码:
303-320
栏目:
山区发展
出版日期:
2025-06-25

文章信息/Info

Title:
Evolution of Waterbody Connectivity in Road-Effect Zone and Its Distance Threshold along the Golmud-Nagqu Section of the Qinghai-Tibet Highway, China
文章编号:
1008-2786-(2025)2-303-18
作者:
尹 静张 博*富志鹏单永体张梦利
(1.极端环境绿色长寿道路工程全国重点实验室,西安 710075; 2.中交第一公路勘察设计研究院有限公司,西安 710075)
Author(s):
YIN Jing ZHANG Bo* FU Zhipeng SHAN Yongti ZHANG Mengli
(1.National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment, Xi'an 710075, China; 2.CCCC First Highway Consultants Co., Ltd., Xi'an 710075,China)
关键词:
水体连通性 水体判识提取 演变 距离阈值 青藏公路 格尔木至那曲段
Keywords:
water connectivity watershed extraction evolution pattern distance threshold the Qinghai-Tibet Highway the Golmud-Nagqu section
分类号:
X22
DOI:
10.16089/j.cnki.1008-2786.000894
文献标志码:
A
摘要:
交通基础设施作为典型的人工干扰系统,其建设运营对高原高寒脆弱区路域水文生态及水体连通性构成显著影响。量化道路沿线水体连通性演变规律及生态影响阈值,是道路生态学领域亟待突破的关键科学问题。本研究以青藏公路格尔木至那曲段(格那段)交通廊道为典型研究区,构建了基于谷歌地球引擎(Google Earth Engine)云平台的自动化水体判识模型,集成增强植被指数(Enhanced Vegetation Index,EVI)、修正的归一化差异水体指数(Modified Normalized Difference Water Index,MNDWI)与大津算法(Otsu's Method),生成1990—2020年连续时间序列水体分布数据集,系统解析12个路域水体连通性的时空演变特征,并基于道路存在/缺失情景模拟,定量识别交通建设对水体网络连通性的干扰阈值。研究表明:(1)该模型实现了高原复杂地表覆盖场景下的精细化水体信息提取,总体提取精度达85%以上(Kappa系数>0.8),但受限于空间分辨率,对细小水体识别存在局限。(2)1990—2020年路域水体结构连通性呈现显著时空分异特征; 1990—2000年结构连通性整体相对降低,而2000—2020年逐渐增加; 功能连通性指标(Integral Index of Connectivity, IIC与Probability of Connectivity, PC)随距离阈值增加而增强,2020年达峰值,反映生态恢复成效显著。(3)道路建设对水体结构连通性集中于道路缓冲带1000 m范围内,其中0~500 m为核心影响区; 不同路段阈值差异显著(高寒荒漠段达1000 m,山地段为500 m)。(4)青藏公路格那段水体功能连通性的适宜缓冲区距离阈值为500~1000 m,该范围内水体斑块重要性指数(IIC值>0.2)集中分布于楚玛尔河与那曲河流域,2020年高连通性斑块面积达280.85 km2(占比35.22%)。研究认为,青藏公路交通规划需避让核心水体斑块,当道路距水体<500 m时应增设生态廊道(如涵洞、盲沟)以缓解阻隔效应; 500~1000 m 区间需结合生态分区制定差异化保护策略。此研究可以为青藏公路走廊基于水系连通的公路生态选线及生态环境保护提供依据。
Abstract:
As a typical artificial disturbance system, the construction and operation of transportation infrastructure have a significant impact on hydrological ecology and waterbody connectivity in the road-effect zone of fragile alpine-cold regions. Quantifying the spatiotemporal evolution of waterbody connectivity along roadways and ecological impact thresholds along traffic corridors remained a critical scientific challenge in road ecology.
In this study it aimed at a case study of waterbody connectivity along the traffic corridor of the Qinghai-Tibet Highway at the Golmud-Nagqu section. An automated waterbody identification model was established using the Google Earth Engine(GEE)cloud platform, integrating the Enhanced Vegetation Index(EVI), Modified Normalized Difference Water Index(MNDWI), and Otsu's Method. A continuous time-series dataset of waterbody distribution from 1990 to 2020 was generated and twelve water connectivity indices were systematically analyzed using Fragstats and Conefor software to reveal spatiotemporal patterns, and a scenario simulation(with/without roads)was conducted to quantify the disturbance threshold of traffic infrastructure on hydrological connectivity.
Key findings include:(1)The model achieved high-precision watershed extraction in complex alpine landscapes, with an overall accuracy exceeding 85%(Kappa coefficient > 0.8). However, limitations in spatial resolution constrained its ability to delineate small water bodies.
(2)From 1990 to 2000, structural connectivity of road-affected waterbodies exhibited pronounced spatiotemporal heterogeneity: a declining trend during 1990-2000 but followed by gradual recovery from 2000 to 2020. Functional connectivity metrics(Integral Index of Connectivity, IIC, and Probability of Connectivity, PC)increased with distances to roadway, peaking in 2020, indicating ecological restoration progress.
(3)Road construction primarily disrupted structural connectivity of hydrology within a 1000 m buffer zone from roadway, with the 0-500 m range as the core impact area. Thresholds varied significantly by terrain(1000 m for alpine desert sections vs. 500 m for mountainous sections).
(4)The optimal buffer distance from roadway for functional connectivity protection along the Golmud-Nagqu section was identified as 500-1000 m, where water patches with high importance indices(IIC>0.2)clustered in the Chumar River and Naqu River basins, covering 280.85 km2(35.22% of the total area)in 2020.
The study recommends avoiding core waterbody zones during the Qinghai-Tibet Highway planning, installing ecological corridors(e.g., culverts, blind ditches)in case of roads being within 500 m of waterbodies, and implementing zone-specific conservation strategies for the 500-1000 m buffer threshold.
These findings provide a scientific basis for eco-friendly highway alignment and biodiversity conservation along the Qinghai-Tibet Highway corridor.

参考文献/References:

[1] HERNANDEZ A, MIRANDA M, ARELLANO E C, et al. Landscape dynamics and their effect on the functional connectivity of a Mediterranean landscape in Chile [J]. Ecological Indicators, 2015, 48: 198-206. DOI: 10.1016/j.ecolind.2014.08.010
[2] CALABRESE J M, FAGAN W F. A comparison-shopper's guide to connectivity metrics [J]. Frontiers in Ecology and the Environment, 2004, 2(10): 529-536. DOI: 10.1890/1540-9295(2004)002[0529:ACSGTC]2.0.CO; 2
[3] SAURA S, ESTREGUIL C, MOUTON C, et al. Network analysis to assess landscape connectivity trends: Application to European forests(1990-2000)[J]. Ecological Indicators, 2011, 11(2): 407-416. DOI: 10.1016/j.ecolind.2010.06.011
[4] UDEN D R, HELLMAN M L, ANGELER D G, et al. The role of reserves and anthropogenic habitats for functional connectivity and resilience of ephemeral wetlands [J]. Ecological Applications, 2014, 24(7): 1569-1582.
[5] SOUGNEZ N, VAN WESEMAEL B, VANACKER V. Low erosion rates measured for steep, sparsely vegetated catchments in southeast Spain [J]. Catena, 2011, 84(1): 1-11.DOI: 10.1016/j.catena.2010.08.010
[6] MCDONOUGH O T, LANG M W, HOSEN J D, et al. Surface hydrologic connectivity between Delmarva Bay wetlands and nearby streams along a gradient of agricultural alteration [J]. Wetlands, 2015, 35: 41-53.DOI: 10.1007/s13157-014-0591-5
[7] LEE S, MCCARTY W G, MOGLEN E G, et al. Seasonal drivers of geographically isolated wetland hydrology in a low-gradient, Coastal Plain landscape [J]. Journal of Hydrology, 2020(5831): 124608. DOI: 10.1016/j.jhydrol.2020.124608
[8] BROOKS J R, MUSHET D M, VANDERHOOF M K, et al. Estimating wetland connectivity to streams in the Prairie Pothole Region: An isotopic and remote sensing approach [J]. Water Resources Research, 2018, 54(2): 955-977. DOI: 10.1002/2017WR021016
[9] CUI Yuan, XIAO Rong, ZHANG Mingxiang, et al. Hydrological connectivity dynamics and conservation priorities for surface-water patches in the Yellow River Delta National Nature Reserve, China [J]. Ecohydrology & Hydrobiology, 2020, 20(4): 525-536. DOI: 10.1016/j.ecohyd.2020.03.005
[10] BENITEZ-LOPEZ A, ALKEMADE R, VERWEIJ P A. The impacts of roads and other infrastructure on mammal and bird populations: A meta-analysis [J]. Biological Conservation, 2010, 143(6): 1307-1316. DOI: 10.1016/j.biocon.2010.02.009
[11] EIGENBROD F, HECNAR S J, FAHRIG L. Quantifying the road-effect zone: Threshold effects of a motorway on anuran populations in Ontario, Canada [J]. Ecology and Society, 2009, 14(1): 12839. DOI: 10.5751/ES-02691-140124
[12] TIWARI V, KUMAR V, MATIN M A, et al. Flood inundation mapping-Kerala 2018 Harnessing the power of SAR, automatic threshold detection method and Google Earth Engine [J]. Plos One, 2020, 15(8): 324. DOI: 10.1371/journal.pone.0237324
[13] HUTH J, GESSNER U, KLEIN I, et al. Analyzing water dynamics based on sentinel-1 time series-a study for Dongting Lake wetlands in China [J]. Remote Sensing, 2020, 12(11): 1761. DOI: 10.3390/rs12111761
[14] NGUYEN U N T, PHAM L T H, DANG T D. Correction to: An automatic water detection approach using Landsat 8 OLl and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand [J]. Environmental Monitoring and Assessment, 2019, 191(4): 616. DOI: 10.1007/s10661-020-08581-y
[15] ZOU Zhenhua, DONG Jinwei, MENARGUEZ M A, et al. Continued decrease of open surface water body area in Oklahoma during 1984-2015 [J]. Science of the Total Environment, 2017, 595: 451-460. DOI: 10.1016/j.scitotenv.2017.03.259
[16] 王伟, 阿里木·赛买提, 马龙, 等. 1986—2019年新疆湖泊变化时空特征及趋势分析[J]. 生态学报, 2022, 42(4): 1300-1314. [WANG Wei, SAMAT Alim, MA Long, et al. Spaio-temporal variations and trend analysis of lake area in Xinjiang in 1986-2019 [J]. Acta Ecologica Sinica, 2022, 42(4): 1300-1314] DOI: 10.5846 /stxb202101150156
[17] SEDIGHIFAR Z, MOTLAGH M G, HALIMI M. Investigating spatiotemporal relationship between EVI of the MODIS and climate variables in northern Iran [J]. International Journal of Environmental Science and Technology, 2020, 17(2): 733-744. DOI: 10.1007/s13762-019-02374-8
[18] ZHANG Jiaxin, YANG Tao, DENG Mingjiang. Ecosystem services' supply-demand assessment and ecological management zoning in northwest China: A perspective of the Water-Food-Ecology nexus [J]. Sustainability, 2024, 16(16): 7223. DOI: 10.3390/sul6167223
[19] SU Lei, ZHU Jinghai, ZENG Lin, et al. Landscape pattern change prediction of Jinhu coastal area based on CA-Markov model [P]. World Automation Congress(WAC), 2012. DOI: 10.1109/ICECC.2012.6242567
[20] 蒙吉军, 王晓东, 尤南山, 等. 黑河中游生态用地景观连接性动态变化及距离阈值[J]. 应用生态学报, 2016, 27(6): 1715-1726. [MENG Jijun,WANG Xiaodong, YOU Nanshan, et al. Dynamic changes of landscape connectivity for ecological lands and distance thresholds in the middle reaches of the Heihe River, northwest China [J]. Chinese Joumal of Applied Ecology, 2016, 27(6): 1715-1726] DOI: 10.13287/j.1001-9332.201606.015
[21] SUTHERLAND G D, HARESTAD A S, PRICE K, et al. Scaling of natal dispersal distance in terrestrial birds and mammals [J]. Conservation Ecology, 2000, 4(1): 16-19.
[22] 陈杰, 梁国付, 丁圣彦. 基于景观连接度的森林景观恢复研究—以巩义市为例[J]. 生态学报, 2012, 32(12): 3773-3781. [CHEN Jie, LIANG Guofu, DING Shengyan. Landscape connectivity analysis for the forest landscape restoration: A case study of Gongyi city. [J]. Acta Ecologica Sinica, 2012, 32(12): 3773-3781] DOI: 10.5846 /stxb201108171210
[23] 王云, 关磊, 杜丽侠, 等. 青藏公路和铁路对青藏高原四种典型有蹄类动物的叠加阻隔和回避影响[J]. 生态学杂志, 2021, 40(4): 1091-1097. [WANG Yun, GUAN Lei, DU Lixia, et al. Overlapping barrier and avoidance effects of the Qinghai-Tibet highway and railway on four typical ungulates on the Tibetan Plateau [J]. Chinese Journal of Ecology, 2021, 40(4): 1091-1097] DOI: 10.13292/j.1000-4890.202104.015
[24] 赵超超, 唐润, 翟瑞, 等. 福建省道路网络对森林覆盖连接度的影响[J]. 山东理工大学学报(自然科学版), 2021, 35(5): 27-32. [ZHAO Chaochao, TANG Run, ZHAI Rui, et al. Effects of road network on forest coverage connectivity in Fujian province [J]. Journal of Shandong University of Technology(Natural Science Edition), 2021, 35(5): 27-32] DOI: 10.13367/j.cnki.sdgc.2021.05.005
[25] 黄勇, 李阳兵, 应弘. 渝宜高速(重庆段)对土地利用变化驱动及景观格局的响应[J]. 自然资源学报, 2015, 30(9): 1449-1460. [HUANG Yong, LI Yangbing, YING Hong. The land use change and landscape pattern response driven by YU-YI expressway(Chongqing Section)[J]. Journal of Natural Resources, 2015, 30(9): 1449-1460] DOI: 10.11849/zrzyxb.2015.09.003
[26] 房建宏. 青海省道路气候区划研究[J]. 路基工程, 2012(4): 12-14. [FANG Jianhong. Research on climatic zoning of highways in Qinghai province [J]. Subgrade Engineering, 2012(4): 12-14] DOI: 1003-8825(2012)04-0012-03
[27] 王生廷, 盛煜, 吴吉春, 等. 基于地貌分类对祁连山大通河源区多年冻土地下冰储量估算[J]. 冰川冻土, 2020, 42(4): 1186-1194. [WANG Shengting, SHENG Yu, WU Jichun, et al. Based on geomorphic classification to estimate the permafrost ground ice reserves in the source area of the Datong River, Qilian Mountains [J]. Joumal of Glaciology and Geocryology, 2020, 42(4): 1186-1194] DOI: 10.7522/j.issn.1000-0240.2018.0305
[28] VOLK X K, GATTRINGER J P, OTTE A, et al. Connectivity analysis as a tool for assessing restoration success [J]. Landscape Ecology, 2018, 33(3): 371-387. DOI: 10.1007/s10980-017-0598-4
[29] HERNANDEZ A, MIRANDA M, ARELLANO E C, et al. Landscape dynamics and their effect on the functional connectivity of a mediterranean landscape in Chile [J]. Ecological Indicators, 2015, 48: 198-206. DOI: 10.1016/j.ecolind.2014.08.010
[30] SAURA S, PASCUAL-HORTAL L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study [J]. Landscape and Urban Planning, 2007, 83(2): 91-103. DOI: 10.1016/j.landurbplan.2007.03.005
[31] WEGAYEHU E B, MULUNEH F B. Super ensemble based streamflow simulation using multi-source remote sensing and ground gauged rainfall data fusion [J]. Heliyon, 2023, 9: e17982. DOI: 10.1016/j.heliyon.2023.e17982
[32] 李丹, 吴保生, 陈博伟, 等. 基于卫星遥感的水体信息提取研究进展与展望[J]. 清华大学学报(自然科学版), 2020, 60(2): 147-161. [LI Dan, WU Baosheng, CHEN Bowei, et al. Review of water body information extraction based on satellite remote sensing [J]. Journal of Tsinghua University(Science &Technology), 2020, 60(2): 147-161] DOI: 10.16511/j.cnki.qhdxxb.2019.22.038
[33] FATHOLOLOUMI S, FIROZJAEI M K, BISWAS A. Improving spatial resolution of satellite soil water index(SWI)maps under clear-sky conditions using a machine learning approach [J]. Journal of Hydrology, 2022(615): 128709. DOI: 10.1016/j.jhydrol.2022.128709
[34] 冯思维, 杨清华, 贾伟洁, 等. 基于光学遥感的内陆地表水体提取综述[J]. 自然资源遥感, 2024, 36(3): 41-56. [FENG Siwei, YANG Qinghua, JIA Weijie, et al. Information extraction of inland surface water bodies based on optical remote sensing: A review [J]. Remote Sensing for Natural Resources, 2024, 36(3): 41-56] DOI: 10.6046/ zrzyyg.2023123
[35] 武燕, 吴映梅, 李琛, 等. 基于风险-质量的高原湖泊流域生态分区构建—以滇池流域为例[J]. 生态学报, 2024, 44(3): 1052-1066. [WU Yan, WU Yingmei, LI Chen, et al. Constnuction of ecological zoning of plateau lake basin based on spatial conflict and eco-envirnmental quality: Acase of Dianchi Lake Basin [J]. Acta Ecologica Sinica, 2024, 44(3): 1052-1066] DOI: 10.20103/j.stxb.202207061928
[36] 王子尧, 黄楚梨, 李倞, 等. 耦合InVEST-HFI-PLUS模型的生态分区规划与动态评估—以博尔塔拉蒙古自治州为例[J]. 生态学报, 2022, 42(14): 5789-5798. [WANG Ziyao, HUANG Chuli, LI Liang, et al. Ecological zoning planning and dynamic evaluaion coupled with lnvet-Hrl-Plus model: A case study in Borala Mongolian Autonomous Prefecture [J]. Acta Ecologica Sinica, 2022, 42(14): 5789-5798] DOI: 10.5846/stxb202108202319
[37] 杜志博, 李洪远, 孟伟庆. 天津滨海新区湿地景观连接度距离阈值研究[J]. 生态学报, 2019, 39(17): 6534-6544. [DU Zhibo, LI Hongyuan, MENG Weiqing. Distance thresholds of wetland landscape connectivity in Tianjin Binhai New Area [J]. Acta Ecologica Sinica, 2019, 39(17): 6534-6544] DOI: 10.5846/stxb201804190897
[38] SUTHERLAND G D, HARESTAD A S, PRICE K, et al. Scaling of natal dispersal distance in terrestrial birds and mammals [J]. Conservation Ecology, 2000, 4(1): 16-19. DOI: 10.1890/0010-060X(2000)004[0016:SONDDIT]2.0.CO; 2
[39] AWADE M, METZGER J P. Using gap-crossing capacity to evaluate functional connectivity of two Atlantic rainforest birds and their response to fragmentation [J]. Austral Ecology, 2008, 33: 863-871. DOI: 10.1111/j.1442-9993.2008.01857.x
[40] 颜子淳, 游宁龙, 王璐, 等. 不同等级道路对福州市生态空间景观连接度的影响研究[J]. 南京师大学报(自然科学版), 2024, 47(1): 48-56. [YAN Zichun, YOU Ninglong, WANG Lu, et al. Research on the influence of different grade roads on the landscape connectivity of ecological space in Fuzhou [J]. Journal of Nanjing Normal University(Natural Science Edition), 2024, 47(1): 48-56] DOI: 10.3969/j.issn.1001-4616.2024.01.007
[41] ALBERT A, SAVINI T, HUYNEN M C. The role of Macaca spp.(Primates: Cercopithecidae)in seed dispersal networks [J]. Raffles Bulletin of Zoology, 2013, 61(1): 423-434. DOI: 10.1163/22941932-20130024
[42] 孟伟灿, 朱述龙, 曹闻, 等. 综合水体指数的创建[J]. 测绘科学, 2013, 38(4): 130-133. [MENG Weican, ZHU Shulong, CAO Wen, et al. Establishment of synthetical water index [J]. Science of Surveying and Mapping, 2013, 38(4): 130-133] DOI: 10.16251/j.cnki.1009-2307.2013.04.039

备注/Memo

备注/Memo:
收稿日期(Received date): 2025- 01- 05; 改回日期(Accepted date):2025- 04-21
基金项目(Foundation item): 国家重点研发计划(2021YFB2600103)。[National Key Research and Development Program Project(2021YFB2600103)]
作者简介(Biography): 尹静(1989-), 女,山西阳泉人,硕士, 正高级工程师,主要研究方向:公路环境保护及生态修复。[YIN Jing(1989-), female, born in Yangquan, Shanxi Province, M.Sc., professor of engineering, research on highway environmental protection and ecological restoration] E-mail:532281966@qq.com
*通讯作者(Corresponding author): 张博(1981-),男,硕士,正高级工程师,主要研究方向:公路环境保护。[ZHANG Bo(1981-), male, M.Sc., professor of engineering, research on highway environmental protection] E-mail:11016865@qq.com
更新日期/Last Update: 2025-03-30