参考文献/References:
[1] 肖扬帆. 空间多准则决策与异构空间数据集成的洪水危险性评估[D]. 武汉: 华中科技大学, 2019: 2-10. [XIAO Yangfan. Flood hazard assessment based on spatial multi-criteria decision making and heterogeneous spatial data integration [D]. Wuhan: Huazhong University of Science and Technology, 2019: 2-10]
[2] YOUSSEF A M, PRADHAN B, SEFRY S A. Flash flood susceptibility assessment in Jeddah city(Kingdom of Saudi Arabia)using bivariate and multivariate statistical models [J]. Environmental Earth Sciences, 2016, 75(1): 12. DOI: 10.1007/s12665-015-4830-8
[3] CAO Yifan, JIA Hongliang, XIONG Junnan, et al. Flash flood susceptibility assessment based on geodetector, certainty factor, and logistic regression analyses in Fujian province, China [J]. ISPRS International Journal of Geo-Information, 2020, 9(12): 748. DOI: 10.3390/ijgi9120748
[4] 王雪梅, 郭良, 翟晓燕. 降雨时空不确定性对小流域洪峰模拟的影响评估[J]. 人民黄河, 2024, 46(4): 49-54. [WANG Xuemei, GUO Liang, ZHAI Xiaoyan. Assessing the impact of rainfall spatial-temporal uncertainty on flood peak simulation in small mountainous catchment [J]. Yellow River, 2024, 46(4): 49-54] DOI: 10.3969/j.issn.1000-1379.2024.04.008
[5] 王雨潇, 刘波, 王文鹏, 等. 基于HEC-HMS模型的三峡区间洪水模拟[J]. 长江科学院院报, 2024, 41(6): 76-83. [WANG Yuxiao, LIU Bo, WANG Wenpeng, et al. Simulation of flood in three gorges region based on HEC-HMS model [J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(6): 76-83] DOI: 10.11988/ckyyb.20230047
[6] MOSAVI A, OZTURK P, CHAU K. Flood prediction using machine learning models: Literature review [J]. Water, 2018, 10(11): 1536. DOI: 10.3390/w10111536
[7] YAO Jing, ZHANG Xiaoxiang, LUO Weicong, et al. Applications of stacking/blending ensemble learning approaches for evaluating flash flood susceptibility [J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102932. DOI: 10.1016/j.jag.2022.102932
[8] BUI D T, TSANGARATOS P, NGO P T T, et al. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods [J]. Science of the Total Environment, 2019, 668: 1038-1054. DOI: 10.1016/j.scitotenv.2019.02.422
[9] ARABAMERI A, SAHA S, CHEN Wei, et al. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques [J]. Journal of Hydrology, 2020, 587: 125007. DOI: 10.1016/j.jhydrol.2020.125007
[10] CHEN Jialei, HUANG Guoru, CHEN Wenjie. Towards better flood risk management: Assessing flood risk and investigating the potential mechanism based on machine learning models [J]. Journal of Environmental Management, 2021, 293: 112810. DOI: 10.1016/j.jenvman.2021.112810
[11] 彭立, 刘邵权, 刘淑珍, 等. 汶川地震重灾区10县资源环境承载力研究[J]. 四川大学学报(工程科学版), 2009, 41(3): 294-300. [PENG Li, LIU Shaoquan, LIU Shuzhen, et al. Studies on bearing capacity of resources and environment of 10 counties in area hited by Wenchuan Earthquake [J]. Journal of Sichuan University(Engineering Science Edition), 2009, 41(3): 294-300] DOI: 10.15961/j.jsuese.2009.03.043
[12] 叶帮苹, 冯汉中, 刘志红, 等. 基于Logistic模型的四川山洪流域危险性评价[J]. 成都信息工程大学学报, 2020, 35(5): 573-578. [YE Bangping, FENG Hanzhong, LIU Zhihong, et al. Risk assessment of Sichuan mountain flooding based on logistic model [J]. Journal of Chengdu University of Information Technology, 2020, 35(5): 573-578] DOI: 10.16836/j.cnki.jcuit.2020.05.016
[13] 王钧, 宇岩, 欧国强, 等. 岷江上游汶川地震重灾区山洪灾害危险分区研究[J]. 长江科学院院报, 2017, 34(1): 54-60. [WANG Jun, YU Yan, OU Guoqiang, et al. Flash flood risk zoning of areas hit by Wenchuan Earthquake in the upper reach of Minjiang River [J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(1): 54-60] DOI: 10.11988/ckyyb.20150956
[14] 张圆圆, 毛爽, 张淑伟. 2000—2017年龙门山断裂带生态脆弱性演变研究[J]. 天津农业科学, 2020, 26(2): 22-28. [ZHANG Yuanyuan, MAO Shuang, ZHANG Shuwei. Evolution of ecological vulnerability in Longmenshan fault zone from 2000 to 2017 [J]. Tianjin Agricultural Sciences, 2020, 26(2): 22-28] DOI: 10.3969/j.issn.1006-6500.2020.02.006
[15] 马旭廷. 基于大数据和机器学习的山洪灾害高风险区识别研究[D]. 山东: 山东建筑大学, 2024: 39-42. [MA Xuting. Research on high-risk area identification of flash flood disasters based on big data and machine learning [D]. Shandong: Shandong Jianzhu University, 2024: 39-42] DOI: 10.27273/d.cnki.gsajc.2023.000807
[16] 石辉, 邓念东, 周阳. 随机森林赋权层次分析法的崩塌易发性评价[J]. 科学技术与工程, 2021, 21(25): 10613-10619. [SHI Hui, DENG Niandong, ZHOU Yang. Evaluation of collapse susceptibility based on random forest weighted analytic hierarchy process [J]. Science Technology and Engineering, 2021, 21(25): 10613-10619]
[17] 杜鹏, 陈宁生, 伍康林, 等. 基于随机森林模型的藏东南地区滑坡易发性评价及主控因素分析[J]. 成都理工大学学报(自然科学版), 2024, 51(2): 328-344. [DU Peng, CHEN Ningsheng, WU Kanglin, et al. Evaluation of landslide susceptibility in southeast Tibet based on a random forest model [J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2024, 51(2): 328-344] DOI: 10.3969/j.issn.1671-9727.2024.02.12
[18] 高泽民, 丁明涛, 杨国辉, 等. 川藏铁路孜热—波密段泥石流灾害危险性评价[J]. 工程地质学报, 2021, 29(2): 478-485. [GAO Zemin, DING Mingtao, YANG Guohui, et al. Hazard assessment of debris flow along Zire-Bomi section of Sichuan-Tibet Railway [J]. Journal of Engineering Geology, 2021, 29(2): 478-485] DOI: 10.13544/j.cnki.jeg.2021-0160
[19] 王启盛, 熊俊楠, 程维明, 等. 耦合统计方法、机器学习模型和聚类算法的滑坡易发性评价方法[J]. 地球信息科学学报, 2024, 26(3): 620-637. [WANG Qisheng, XIONG Junnan, CHENG Weiming, et al. Landslide susceptibility mapping methods coupling with statistical methods, machine learning models and clustering algorithms [J]. Journal of Geo- information Science, 2024, 26(3): 620-637] DOI: 10.12082/ dqxxkx.2024.230427
[20] 吴小君, 方秀琴, 任立良, 等. 基于随机森林的山洪灾害风险评估——以江西省为例[J]. 水土保持研究, 2018, 25(3): 142-149. [WU Xiaojun, FANG Xiuqin, REN Liliang, et al. Risk assessment of mountain torrents disaster based on random forest: A case study in Jiangxi province [J]. Research of Soil and Water Conservation, 2018, 25(3): 142-149] DOI: 10.13869/j.cnki.rswc.2018.03.021
[21] COSTACHE R, HONG Haoyuan, PHAM Q B. Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models [J]. Science of the Total Environment, 2020, 711: 134514. DOI: 10.1016/j.scitotenv.2019.134514
[22] HOSSEINI F S, CHOUBIN B, MOSAVI A, et al. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method [J]. Science of the Total Environment, 2020, 711: 135161. DOI: 10.1016/j.scitotenv.2019.135161
[23] FRIEDMAN J H. Greedy function approximation: A gradient boosting machine [J]. The Annals of Statistics, 2001, 29(5): 1189-1232. DOI: 10.1214/aos/1013203451
[24] LIANG Weizhang, LUO Suizhi, ZHAO Guoyan, et al. Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms [J]. Mathematics, 2020, 8(5): 765. DOI: 10.3390/math8050765
[25] 祝元丽, 冯向阳, 闫庆武, 等. 基于GBDT的望奎县农田土壤有机碳主控因子研究[J]. 中国环境科学, 2024, 44(3): 1407-1417. [ZHU Yuanli, FENG Xiangyang, YAN Qingwu, et al. Spatial distribution and main controlling factors of soil organic carbon under cultivated land based on GBDT model in black soil region of Northeast China [J]. China Environmental Science, 2024, 44(3): 1407-1417] DOI: 10.19674/j.cnki.issn1000-6923.2024.0054
[26] 范天程, 贾云飞, 李云飞, 等. 基于遥感影像与逻辑回归模型的延河流域沟壑分布概率预测[J]. 水土保持研究, 2022, 29(4): 316-321. [FAN Tiancheng, JIA Yunfei, LI Yunfei, et al. Prediction of gully distribution probability in Yanhe basin based on remote sensing image and logistic regression model [J]. Research of Soil and Water Conservation, 2022, 29(4): 316-321] DOI: 10.13869/j.cnki.rswc.20220414.007
[27] QI C R, SU Hao, NIESBNER M, et al. Volumetric and multi-view CNNs for object classification on 3D data [A]. 2016: 5648-5656. DOI: 10.1109/CVPR.2016.609
[28] 曾营, 张迎宾, 张钟远, 等. 基于X-多层感知器耦合模型的滑坡易发性评价——以贵州省松桃自治县为例[J]. 山地学报, 2023, 41(2): 280-294. [ZENG Ying, ZHANG Yingbin, ZHANG Zhongyuan, et al. Landslide susceptibility evaluation based on coupled X-multilayer perceptron model —a case study of Songtao Autonomous county of Guizhou province, China [J]. Mountain Research, 2023, 41(2): 280-294] DOI: 10.16089/j.cnki.1008-2786.000748
[29] 蒲未来, 刘敦龙, 桑学佳, 等. 融合多源异构数据的滑坡变形阶段智能判识方法[J]. 灾害学, 2023, 38(4): 179-186. [PU Weilai, LIU Dunlong, SANG Xuejia, et al. An intelligent identification method of landslide deformation stage based on multi-source heterogeneous data [J]. Journal of Catastrophology, 2023, 38(4): 179-186] DOI: 10.3969/j.issn.1000-811X.2023.04.029
[30] SMYTH P, WOLPERT D. Linearly combining density estimators via stacking [J]. Machine Learning, 1999, 36(1): 59-83. DOI: 10.1023/A:1007511322260
[31] SWETS J A. Measuring the accuracy of diagnostic systems [J]. Science, 1988, 240(4857): 1285-1293. DOI: 10.1126/science.3287615
[32] 中华人民共和国水利部. 中国水旱灾害公报: 2016-2022 [EB/OL]. 北京: 中华人民共和国水利部,(2024- 05-31)[2024- 08- 01]. http://www.mwr.gov.cn/sj/tjgb/zgshzhgb/. [Ministry of Water Resources of the People's Republic of China. China flood and drought disaster bulletin: 2016-2022 [EB/OL]. Beijing: Ministry of Water Resources of the People's Republic of China,(2024- 05-31)[2024- 08- 01]. http://www.mwr.gov.cn/sj/tjgb/zgshzhgb/]
[33] 涂勇, 吴泽斌, 何秉顺. 2011—2019年全国山洪灾害事件特征分析[J]. 中国防汛抗旱, 2020, 30(9/10): 22-25. [TU Yong, WU Zebin, HE Bingshun. Analysis on the characteristics of flash flood disasters in China from 2011 to 2019 [J]. China Flood & Drought Management, 2020, 30(9/10): 22-25] DOI: 10.16867/j.issn.1673-9264.2020239
[34] 时开鑫, 陈跃红, 张晓祥, 等. 基于图聚类神经网络的江西省山洪灾害危险性区划研究[J]. 地理与地理信息科学, 2023, 39(3): 7-15. [SHI Kaixin, CHEN Yuehong, ZHANG Xiaoxiang, et al. Flash flood hazard regionalization based on graph clustering neural network in Jiangxi province, China [J]. Geography and Geo-Information Science, 2023, 39(3): 7-15] DOI: 10.3969/j.issn.1672-0504.2023.03.002
[35] FERNANDEZ D S, LUTZ M A. Urban flood hazard zoning in Tucumán province, Argentina, using GIS and multicriteria decision analysis [J]. Engineering Geology, 2010, 111(1): 90-98. DOI: 10.1016/j.enggeo.2009.12.006
[36] CHAPI K, SINGH V P, Shirzadi A, et al. A novel hybrid artificial intelligence approach for flood susceptibility assessment [J]. Environmental Modelling & Software, 2017, 95: 229-245. DOI: 10.1016/j.envsoft.2017.06.012
[37] TEHRANY M S, PRADHAN B, JEBUR M N. Spatial prediction of flood susceptible areas using rule based decision tree(DT)and a novel ensemble bivariate and multivariate statistical models in GIS [J]. Journal of Hydrology, 2013, 504: 69-79. DOI: 10.1016/j.jhydrol.2013.09.034
[38] MACMILLAN R A, SHARY P A. Chapter 9 Landforms and landform elements in geomorphometry [M]// HENGL T, REUTER H I. Developments in soil science. Amsterdam: Elsevier, 2009, 33: 227-254. DOI: 10.1016/S0166-2481(08)00009-3
[39] WANG Yi, HONG Haoyuan, CHEN Wei, et al. Flood susceptibility mapping in Dingnan county(China)using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm [J]. Journal of Environmental Management, 2019, 247: 712-729. DOI: 10.1016/j.jenvman.2019.06.102
[40] POUDYAL C P, CHANG Chandong, OH H J, et al. Landslide susceptibility maps comparing frequency ratio and artificial neural networks: A case study from the Nepal Himalaya [J]. Environmental Earth Sciences, 2010, 61(5): 1049-1064. DOI: 10.1007/s12665-009-0426-5
[41] CAO Chen, XU Peihua, WANG Yihong, et al. Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas [J]. Sustainability, 2016, 8(9): 948. DOI: 10.3390/su8090948
[42] KAISER M, GUNNEMANN S, DISSE M. Regional-scale prediction of pluvial and flash flood susceptible areas using tree-based classifiers [J]. Journal of Hydrology, 2022, 612: 128088. DOI: 10.1016/j.jhydrol.2022.128088
[43] 祁靓雯. 基于GIS技术的紫阳县山洪灾害风险评价[D]. 西安: 长安大学, 2018: 40-41. [QI Liangwen. Mountain flood risk assessment of Ziyang county based on GIS [D]. Xi'an: Chang'an University, 2018: 40-41]
[44] 熊俊楠, 曹依帆, 程维明, 等. 福建省山洪灾害危险性评价[J]. 山地学报, 2019, 37(4): 538-550. [XIONG Junnan, CAO Yifan, CHENG Weiming, et al. Risk assessment of mountain torrent disasters in Fujian province, China [J]. Mountain Research, 2019, 37(4): 538-550] DOI: 10.16089/j.cnki.1008-2786.000446