[1]柳万里,周春宏*,程万强,等.含向斜软硬互层岩质边坡失稳离心模型试验[J].山地学报,2025,(1):132-143.[doi:10.16089/j.cnki.1008-2786.000881]
 LIU Wanli,ZHOU Chunhong*,CHENG Wangqiang,et al.Centrifugal Model Test on Instability of Synclinic Soft-Hard Interbedded Rock Slope[J].Mountain Research,2025,(1):132-143.[doi:10.16089/j.cnki.1008-2786.000881]
点击复制

含向斜软硬互层岩质边坡失稳离心模型试验()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第1期
页码:
132-143
栏目:
山地灾害
出版日期:
2025-02-20

文章信息/Info

Title:
Centrifugal Model Test on Instability of Synclinic Soft-Hard Interbedded Rock Slope
文章编号:
1008-2786-(20251-132-12)
作者:
柳万里1周春宏1*程万强1王 滨1王 磊2
(1. 中国电建集团华东勘测设计研究院有限公司,杭州 311122; 2. 成都理工大学 地质灾害防治与地质环境保护国家重点实验室,成都 610059)
Author(s):
LIU Wanli1 ZHOU Chunhong1* CHENG Wangqiang1 WANG Bin1 WANG Lei2
(1. PowerChina Huadong Engineering Corporation Limited, Hangzhou, 311122, China; 2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)
关键词:
离心试验 软硬互层 复杂结构边坡 倾倒变形 失稳机制
Keywords:
centrifugal test soft-hard interbedded complex structural slope toppling deformation instability mechanism
分类号:
P642.2
DOI:
10.16089/j.cnki.1008-2786.000881
文献标志码:
A
摘要:
中国西南地区超过76%的深层倾倒体发育于软硬互层边坡中。工程界对这类特殊结构体的认知深度不足,现有工程模型多忽略地质构造影响,对构造-岩性耦合效应考虑不足。本研究以卡拉水电站一江滑坡为研究对象(杂谷脑组典型软硬互层边坡),创新性构建含向斜构造的地质概化模型。通过大型离心模型试验(以石英砂、水泥、重晶石粉、石膏、水为原料制作相似材料),实现构造控制型倾倒变形的全过程动态模拟,揭示软硬岩层差异破坏的时空演化规律。研究发现:(1)位移场呈现显著空间分异。坡面各监测点的竖向位移曲线按演化趋势可划分为6个阶段。坡顶处累计竖向位移最大,约81.1 mm; 坡体中部位移次之,约10 mm; 坡脚位移最小,约8.3 mm。(2)破坏演化具阶段性。边坡模型由坡顶开始发生倾倒变形破坏,位于坡体中部的向斜产生压缩变形与小角度旋转(≤3.1°); 大量压致拉裂缝集中发育于向斜上部坡体内,并贯通形成倾倒折断面。(3)构造缓冲效应显著。软硬互层岩体结构导致的非协调变形与坡体中部向斜构造压缩变形的缓冲作用,削弱了边坡上部岩体对向斜下部坡体的推挤压缩作用,宏观表现为向斜以下坡体无明显变形。(4)含向斜软硬互层反倾岩质边坡的变形失稳模式为自上而下的非协调式深层倾倒破坏。本研究能够丰富软硬互层这一特殊结构岩质边坡的孕灾变形与成灾失稳理论,并为西南地区同类型边坡的防治设计提供科学依据。
Abstract:
Over 76% of deep-seated toppling geo-bodies in southwestern China develop within soft-hard interbedded slopes. Available engineering models inadequately address the structural complexity of such slopes, particularly neglecting the tectonic-lithological coupling effect.
In this study, it took the Yijiang landslide at the Kala Hydropower Station(a typical hard-soft interbedded slope in the Zagunao Formation)as research object. An innovative generalized geological model incorporating synclinal structures was developed. Large-scale centrifugal model tests were conducted using simulated materials(quartz sand, cement, barite powder, gypsum, and water)to dynamically replicate the entire syncline-controlled toppling process, revealing spatiotemporal evolution mechanisms of differential failure in soft-hard interlayers.
(1)Significant spatial differentiation in displacement fields: Vertical displacement curves at monitoring points exhibited six evolutionary stages. Maximum cumulative vertical displacement occurred at the slope crest(81.1 mm), followed by mid-slope(10 mm)and slope toe(8.3 mm).
(2)Stage-dependent failure evolution: Deformation initiated from the crest, with synclinal compression and minor rotation(≤3.1°)observed at mid-slope. Compression-induced tensile cracks concentrated in the upper syncline zone, coalescing into through-going toppling surfaces.
(3)Remarkable structural buffering effect: Non-coordinated deformation from lithological contrasts and synclinal compression at mid-slope reduced thrust transmission efficiency, resulting in negligible deformation below the syncline.
(4)A “top-down non-coordinated deep toppling” failure mode was identified for syncline-containing soft-hard interbedded counter-tilted slopes.
This study advances the theoretical framework for hazard evolution in structurally complex slopes and provides scientific guidelines for slope reinforcement in southwestern China.

参考文献/References:

[1] GOODMAN R E, BRAY J W. Toppling of rock slopes [G]// American Society of Civil Engineers. Proceedings of the specialty conference on rock engineering for foundations and slopes. Bouider: American Society of Civil Engineers, 1976: 15-18. DOI: 10. 1007/BF01020126
[2] 王飞. 雅砻江上游互层斜坡深层倾倒变形破坏机制及稳定性评价[D]. 武汉: 中国地质大学, 2020: 1-118. [WANG Fei. Failure mechanism and stability assessment of deep-seated toppling in interlayered rock slopes at upstream of Yalong River [D]. Wuhan: China University of Geosciences, 2020: 1-118] DOI: 10.27492/d.cnki.gzdzu.2019.000091
[3] TU Guoxiang, DENG Hui, SHANG Qi, et al. Deep-seated large-scale toppling failure: A case study of the Lancang slope in southwest China [J]. Rock Mechanics and Rock Engineering, 2020, 53(8): 3417-3432. DOI: 10. 1007/s00603-020-02132-0
[4] LIU Ming, LIU Fangzhou, HUANG Runqiu, et al. Deep-seated large-scale toppling failure in metamorphic rocks: A case study of the Erguxi slope in southwest China [J]. Journal of Mountain Science, 2016, 13(12): 2094-2110. DOI: 10.1007/s11629-015-3803-4
[5] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454] DOI: 10.3321/j.issn:1000-6915.2007.03.001
[6] HUANG Runqiu. Understanding the mechanism of large-scale landslides [J]. Engineering Geology for Society and Territory, 2015, 2(10): 13-32. DOI: 10.1007/978-3-319-09057-3-2
[7] 王飞, 唐辉明. 雅砻江上游互层斜坡倾倒变形破坏机制与演化[J]. 工程地质学报, 2017, 25(6): 1501-1508. [WANG Fei, TANG Huiming. Mechanism and evolution of toppling in interbedded slopes at upstream of Yalong River [J]. Journal of Engineering Geology, 2017, 25(6): 1501-1508] DOI: 10.13544/j.cnki.jeg.2017.06.013
[8] 王飞, 唐辉明, 宁奕冰, 等. 基于演化过程的互层斜坡深层倾倒稳定性评价[J]. 地质科技情报, 2019, 38(5): 186-194. [WANG Fei, TANG Huiming, NING Yibing, et al. Stability analysis of deep-seated toppling in interlayered rock slopes based on evolution process [J]. Geological Science and Technology Information, 2019, 38(5): 186-194] DOI: 10.19509/j.cnki.dzkq.2019.0519
[9] 郑达, 王沁沅, 毛峰, 等. 反倾层状岩质边坡深层倾倒变形关键致灾因子及成灾模式的离心试验研究[J]. 岩石力学与工程学报, 2019, 38(10): 1954-1963. [ZHENG Da, WANG Qinyuan, MAO Feng, et al. Centrifuge model test study on key hazard-inducing factors of deep toppling deformation and disaster patterns of counter-tilt layered rock slopes [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 1954-1963] DOI: 10.13722/j.cnki.jrme.2018.1484
[10] 宁奕冰. 澜沧江中上游深层倾倒体变形失稳过程及稳定性评价研究[D]. 武汉: 中国地质大学, 2022: 1-232. [NING Yibing. Study on the deformation and instability process and stability evaluation of deep-seated toppling in the upper-middle Lancang River [D]. Wuhan: China University of Geosciences, 2022: 1-232] DOI: 10.27492/d.cnki.gzdzu.2022.000041
[11] 黄达, 谢周州, 宋宜祥, 等. 软硬互层状反倾岩质边坡倾倒变形离心模型试验研究[J]. 岩石力学与工程学报, 2021, 40(7): 1357-1368. [HUANG Da, XIE Zhouzhou, SONG Yixiang, et al. Centrifuge model test study on toppling deformation of anti-dip soft-hard interbedded rock slopes [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1357-1368] DOI: 10.13722/j.cnki.jrme.2020.0912
[12] ZHANG Zelin, LIU Gao, WU Shuren, et al. Rock slope deformation mechanism in the Cihaxia Hydropower Station, northwest China [J]. Bulletin of Engineering Geology and the Environment, 2015, 74(3): 1-16. DOI: 10.1007/s10064-014-0672-y
[13] LIU Yang, HUANG Da, PENG Jianbing, et al. Analysis of the effect of rock layer structure on the toppling failure evolution of soft-hard interbedded anti-dip slopes [J]. Engineering Failure Analysis, 2023, 145: 107005. DOI: 10.1016/j.engfailanal.2022.107005
[14] 黄达, 马昊, 石林. 反倾层状岩质边坡倾倒变形机理与影响因素的离散元模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1770-1782. [HUANG Da, MA Hao, SHI Lin. Discrete element simulation of toppling mechanism and influencing factors of anti-dip layered rock slope [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6): 1770-1782] DOI: 10.13278/j.cnki.jjuese.20200028
[15] HUANG Da, MA Hao, HUANG Runqiu. Deep-seated toppling deformations of rock slopes in western China [J]. Landslides, 2022, 19(12): 809-827. DOI: 10.1007/s10346-021-01829-9
[16] HUANG Da, MA Hao, HUANG Runqiu, et al. Deep-seated toppling deformations at the dam site of the Miaowei Hydropower Station, southwest China [J]. Engineering Geology, 2022, 303(4): 106654. DOI: 10.1016/j.enggeo.2022.106654
[17] GUO Hui, YAN Chengzeng, ZHANG Guohua, et al. Mechanical analysis of toppling failure using FDEM: A case study for soft-hard interbedded anti-dip rock slope [J]. Computers and Geotechnics, 2024, 165: 105883. DOI: 10.1016/j.compgeo.2023.105883
[18] DONG Menglong, ZHANG Faming, LYU Jingqing, et al. Study on deformation and failure law of soft-hard rock interbedding toppling slope base on similar test [J]. Bulletin of Engineering Geology and the Environment, 2020, 79: 4625-4637. DOI: 10.1007/s10064-020-01845-4
[19] CHIKATAMARLA R, LAUE J. Centrifuge scaling laws for guided free fall events including rockfalls [J]. International Journal of Physical Modelling in Geotechnics, 2006, 6(2): 15-26. DOI: 10.1680/ijpmg.2006.060202
[20] 黄达, 马昊, 孟秋杰, 等. 软硬互层岩质反倾边坡弯曲倾倒离心模型试验与数值模拟研究[J]. 岩土工程学报, 2020, 42(7): 1286-1295. [HUANG Da, MA Hao, MENG Qiujie, et al. Centrifugal model test and numerical simulation for anaclinal rock slopes with soft-hard interbedded structures [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1286-1295] DOI: 10.11779/CJGE202007012
[21] 马昊. 层状岩质反倾边坡倾倒变形离心模型试验的数值模拟研究[D]. 重庆: 重庆大学, 2021: 1-155. [MA Hao. Numerical simulation of centrifugal model test for toppling deformation of layered anaclinal slope [D]. Chongqing: Chongqing University, 2021: 1-155] DOI: 10.27670/d.cnki.gcqdu.2019.000484
[22] 李彦奇, 黄达, 孟秋杰. 基于离心机和数值模拟的软硬互层反倾层状岩质边坡变形特征分析[J]. 水文地质工程地质, 2021, 48(4): 141-150. [LI Yanqi, HUANG Da, MENG Qiujie. An analysis of the deformation characteristics of soft-hard interbedded anti-tilting layered rock slope based on centrifuge and numerical simulation [J]. Hydrogeology & Engineering Geology, 2021, 48(4): 141-150] DOI: 10.16030/j.cnki.issn.1000-3665.202007062
[23] 谢周州. 软硬互层反倾边坡倾倒破坏机制及稳定性研究[D]. 天津: 河北工业大学, 2021: 1-93. [XIE Zhouzhou. Study on the toppling failure mechanism and stability of the anti-dip soft-hard interbedded rock slope [D]. Tianjin: Hebei University of Technology, 2021: 1-93] DOI: 10.27105/d.cnki.ghbgu.2021.001183
[24] 黄达, 马昊, 孟秋杰, 等. 反倾软硬互层岩质边坡倾倒变形破坏机理与影响因素研究[J]. 工程地质学报, 2021, 29(3): 602-616. [HUANG Da, MA Hao, MENG Qiujie, et al. Study on toppling mechanism and affecting factors of anti-dip rock slopes with soft-hard interbedded structure [J]. Journal of Engineering Geology, 2021, 29(3): 602-616] DOI: 10.13544/j.cnki.jeg.2020-417
[25] 霍逸康, 石振明, 郑鸿超, 等. 软硬互层反倾岩质边坡稳定性影响因素分析及破坏模式研究[J]. 工程地质学报, 2021, 31(5): 1680-1688. [HUO Yikang, SHI Zhenming, ZHENG Hongchao, et al. Study on influence factors of stability and failure modes of anti-dip rock slope with soft and hard interbed [J]. Journal of Engineering Geology, 2021, 31(5): 1680-1688] DOI: 10.13544/j.cnki.jeg.2021-0159
[26] WANG Runqing, ZHENG Yun, CHEN Congxin, et al. Theoretical and numerical analysis of flexural toppling failure in soft-hard interbedded anti-dip rock slopes [J]. Engineering Geology, 2023, 312: 106923. DOI: 10.1016/j.enggeo.2022.106923
[27] LI Jinduo, GAO Yuan, YANG Tianhong, et al. Integrated simulation and monitoring to analyze failure mechanism of the anti-dip layered slope with soft and hard rock interbedding [J]. International Journal of Mining Science and Technology, 2023, 33(9): 1147-1164. DOI: 10.1016/j.ijmst.2023.06.006
[28] ARBANAS Z, BENAC C, GROSIC M. Remedial works on landslide in complex geological conditions [C]//17th International Conference on Soil Mechanics and Geotechnical Engineering, ICSMGE 2009, October 5, 2009 - October 9, 2009: Vol. 3. Alexandria, Egypt: IOS Press, 2009: 2638-2641.
[29] 朱伟, 王孔伟, 魏东, 等. 三峡库区忠县向斜内部滑坡空间分布特征[J]. 水土保持通报, 2018, 38(4): 98-102. [ZHU Wei, WANG Kongwei, WEI Dong, et al. Spatial distribution characteristics of internal landslides of Zhongxian County syncline in Three Gorges reservoir area [J]. Bulletin of Soil and Water Conservation, 2018, 38(4): 98-102] DOI: 10.13961/j.cnki.stbctb.2018.04.016
[30] 王汉臣, 邓华锋, 刘健, 等. 那伦水库料场边坡岩土体开挖变形及破坏特征[J]. 水电能源科学, 2024, 42(12): 82-86. [WANG Hanchen, DENG Huafeng, LIU Jian, et al. Relationship between rock-soil body structure and excavation deformation failure in quarry of Nalun reservoir [J]. Water Resources and Power, 2024, 42(12): 82-86] DOI: 10.20040/j.cnki.1000-7709.2024.20240108
[31] 鲍利发, 陈建林. 卡拉地下厂房位置及轴线方向选择 [C]//雅砻江虚拟研究中心, 2014年度学术年会论文集. 2014: 384-388. [BAO Lifa, CHEN Jianlin. Selection on the location and axis for the underground powerhouse of Kala Hydropower Station [C]// Yalong River Virtual Research Center, Proceedings of the 2014 annual academic conference of Yalong River Virtual Research Center. 2014: 384-388]
[32] 方丹, 韩钢, 鄢江平, 等. 卡拉水电站地下洞室群稳定性分析及洞室间距优化研究[J]. 长江科学院院报, 2023, 40(11): 93-101+110. [FANG Dan, HAN Gang, YAN Jiangping, et al. Stability analysis of underground caverns and optimization of cavern spacing of Kala hydropower station [J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(11): 93-101+110] DOI: 10.11988/ckyyb.20220649
[33] 李龙起, 李昌林, 何川, 等. 新型离心机串联模型试验方法及其初步应用研究[J]. 水利水电技术, 2019, 50(4): 200-204. [LI Longqi, LI Changlin, HE Chuan, et al. Study on method of a new centrifugal tandem model test and its preliminary application [J]. Water Resources and Hydropower Engineering, 2019, 50(4): 200-204] DOI: 10.13928/j.cnki.wrahe.2019.04.027
[34] 泮晓华, 薛雷, 秦四清, 等. 潜在锁固型滑坡的类型、形成条件和预判方法研究[J]. 工程地质学报, 2014, 22(6): 1159-1167. [PAN Xiaohua, XUE Lei, QIN Siqing, et al. Types, formation conditions and pre-dicision method for large landslides with potential locked patches [J]. Journal of Engineering Geology, 2014, 22(6): 1159-1167] DOI: 10.13544/j.cnki.jeg.2014.06.021
[35] 马文著, 徐衍, 李晓雷, 等. 基于黏聚力裂缝模型的反倾层状岩质边坡倾倒破坏模拟[J]. 水文地质工程地质, 2020, 47(5): 150-160. [MA Wenzhu, XU Yan, LI Xiaolei, et al. A numerical study of the toppling failure of an anti-dip layered rock slope based on a cohesive crack model [J]. Hydrogeology & Engineering Geology, 2020, 47(5): 150-160] DOI: 10.16030/j.cnki.issn.1000-3665.201909028

备注/Memo

备注/Memo:
收稿日期(Received date): 2024-11- 02; 改回日期(Accepted date):2025- 02-19
基金项目(Foundation item): 中国电建集团华东勘测设计研究院有限公司科技立项项目(KY2022-KC- 02- 03)。[Science and Technology Project of Power China Huadong Engineering Corporation Limited(KY2022-KC- 02- 03)]
作者简介(Biography): 柳万里(1993-),男,安徽宿州人,博士,主要研究方向:工程地质、地质灾害。[LIU Wanli(1993-), male, born in Suzhou, Anhui Province, Ph.D., research on engineering geology and geological disasters] E-mail: liu_wl@hdec.com
*通讯作者(Corresponding author): 周春宏(1965-),男,本科,正高级工程师,主要研究方向:工程地质、水利水电。[ZHOU Chunhong(1965-), male, B.S., professor of engineering, research on engineering geology and hydraulic and hydropower] E-mail: zhou_ch@hdec.com
更新日期/Last Update: 2025-01-30