参考文献/References:
[1] GOODMAN R E, BRAY J W. Toppling of rock slopes [G]// American Society of Civil Engineers. Proceedings of the specialty conference on rock engineering for foundations and slopes. Bouider: American Society of Civil Engineers, 1976: 15-18. DOI: 10. 1007/BF01020126
[2] 王飞. 雅砻江上游互层斜坡深层倾倒变形破坏机制及稳定性评价[D]. 武汉: 中国地质大学, 2020: 1-118. [WANG Fei. Failure mechanism and stability assessment of deep-seated toppling in interlayered rock slopes at upstream of Yalong River [D]. Wuhan: China University of Geosciences, 2020: 1-118] DOI: 10.27492/d.cnki.gzdzu.2019.000091
[3] TU Guoxiang, DENG Hui, SHANG Qi, et al. Deep-seated large-scale toppling failure: A case study of the Lancang slope in southwest China [J]. Rock Mechanics and Rock Engineering, 2020, 53(8): 3417-3432. DOI: 10. 1007/s00603-020-02132-0
[4] LIU Ming, LIU Fangzhou, HUANG Runqiu, et al. Deep-seated large-scale toppling failure in metamorphic rocks: A case study of the Erguxi slope in southwest China [J]. Journal of Mountain Science, 2016, 13(12): 2094-2110. DOI: 10.1007/s11629-015-3803-4
[5] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454] DOI: 10.3321/j.issn:1000-6915.2007.03.001
[6] HUANG Runqiu. Understanding the mechanism of large-scale landslides [J]. Engineering Geology for Society and Territory, 2015, 2(10): 13-32. DOI: 10.1007/978-3-319-09057-3-2
[7] 王飞, 唐辉明. 雅砻江上游互层斜坡倾倒变形破坏机制与演化[J]. 工程地质学报, 2017, 25(6): 1501-1508. [WANG Fei, TANG Huiming. Mechanism and evolution of toppling in interbedded slopes at upstream of Yalong River [J]. Journal of Engineering Geology, 2017, 25(6): 1501-1508] DOI: 10.13544/j.cnki.jeg.2017.06.013
[8] 王飞, 唐辉明, 宁奕冰, 等. 基于演化过程的互层斜坡深层倾倒稳定性评价[J]. 地质科技情报, 2019, 38(5): 186-194. [WANG Fei, TANG Huiming, NING Yibing, et al. Stability analysis of deep-seated toppling in interlayered rock slopes based on evolution process [J]. Geological Science and Technology Information, 2019, 38(5): 186-194] DOI: 10.19509/j.cnki.dzkq.2019.0519
[9] 郑达, 王沁沅, 毛峰, 等. 反倾层状岩质边坡深层倾倒变形关键致灾因子及成灾模式的离心试验研究[J]. 岩石力学与工程学报, 2019, 38(10): 1954-1963. [ZHENG Da, WANG Qinyuan, MAO Feng, et al. Centrifuge model test study on key hazard-inducing factors of deep toppling deformation and disaster patterns of counter-tilt layered rock slopes [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 1954-1963] DOI: 10.13722/j.cnki.jrme.2018.1484
[10] 宁奕冰. 澜沧江中上游深层倾倒体变形失稳过程及稳定性评价研究[D]. 武汉: 中国地质大学, 2022: 1-232. [NING Yibing. Study on the deformation and instability process and stability evaluation of deep-seated toppling in the upper-middle Lancang River [D]. Wuhan: China University of Geosciences, 2022: 1-232] DOI: 10.27492/d.cnki.gzdzu.2022.000041
[11] 黄达, 谢周州, 宋宜祥, 等. 软硬互层状反倾岩质边坡倾倒变形离心模型试验研究[J]. 岩石力学与工程学报, 2021, 40(7): 1357-1368. [HUANG Da, XIE Zhouzhou, SONG Yixiang, et al. Centrifuge model test study on toppling deformation of anti-dip soft-hard interbedded rock slopes [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1357-1368] DOI: 10.13722/j.cnki.jrme.2020.0912
[12] ZHANG Zelin, LIU Gao, WU Shuren, et al. Rock slope deformation mechanism in the Cihaxia Hydropower Station, northwest China [J]. Bulletin of Engineering Geology and the Environment, 2015, 74(3): 1-16. DOI: 10.1007/s10064-014-0672-y
[13] LIU Yang, HUANG Da, PENG Jianbing, et al. Analysis of the effect of rock layer structure on the toppling failure evolution of soft-hard interbedded anti-dip slopes [J]. Engineering Failure Analysis, 2023, 145: 107005. DOI: 10.1016/j.engfailanal.2022.107005
[14] 黄达, 马昊, 石林. 反倾层状岩质边坡倾倒变形机理与影响因素的离散元模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1770-1782. [HUANG Da, MA Hao, SHI Lin. Discrete element simulation of toppling mechanism and influencing factors of anti-dip layered rock slope [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6): 1770-1782] DOI: 10.13278/j.cnki.jjuese.20200028
[15] HUANG Da, MA Hao, HUANG Runqiu. Deep-seated toppling deformations of rock slopes in western China [J]. Landslides, 2022, 19(12): 809-827. DOI: 10.1007/s10346-021-01829-9
[16] HUANG Da, MA Hao, HUANG Runqiu, et al. Deep-seated toppling deformations at the dam site of the Miaowei Hydropower Station, southwest China [J]. Engineering Geology, 2022, 303(4): 106654. DOI: 10.1016/j.enggeo.2022.106654
[17] GUO Hui, YAN Chengzeng, ZHANG Guohua, et al. Mechanical analysis of toppling failure using FDEM: A case study for soft-hard interbedded anti-dip rock slope [J]. Computers and Geotechnics, 2024, 165: 105883. DOI: 10.1016/j.compgeo.2023.105883
[18] DONG Menglong, ZHANG Faming, LYU Jingqing, et al. Study on deformation and failure law of soft-hard rock interbedding toppling slope base on similar test [J]. Bulletin of Engineering Geology and the Environment, 2020, 79: 4625-4637. DOI: 10.1007/s10064-020-01845-4
[19] CHIKATAMARLA R, LAUE J. Centrifuge scaling laws for guided free fall events including rockfalls [J]. International Journal of Physical Modelling in Geotechnics, 2006, 6(2): 15-26. DOI: 10.1680/ijpmg.2006.060202
[20] 黄达, 马昊, 孟秋杰, 等. 软硬互层岩质反倾边坡弯曲倾倒离心模型试验与数值模拟研究[J]. 岩土工程学报, 2020, 42(7): 1286-1295. [HUANG Da, MA Hao, MENG Qiujie, et al. Centrifugal model test and numerical simulation for anaclinal rock slopes with soft-hard interbedded structures [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1286-1295] DOI: 10.11779/CJGE202007012
[21] 马昊. 层状岩质反倾边坡倾倒变形离心模型试验的数值模拟研究[D]. 重庆: 重庆大学, 2021: 1-155. [MA Hao. Numerical simulation of centrifugal model test for toppling deformation of layered anaclinal slope [D]. Chongqing: Chongqing University, 2021: 1-155] DOI: 10.27670/d.cnki.gcqdu.2019.000484
[22] 李彦奇, 黄达, 孟秋杰. 基于离心机和数值模拟的软硬互层反倾层状岩质边坡变形特征分析[J]. 水文地质工程地质, 2021, 48(4): 141-150. [LI Yanqi, HUANG Da, MENG Qiujie. An analysis of the deformation characteristics of soft-hard interbedded anti-tilting layered rock slope based on centrifuge and numerical simulation [J]. Hydrogeology & Engineering Geology, 2021, 48(4): 141-150] DOI: 10.16030/j.cnki.issn.1000-3665.202007062
[23] 谢周州. 软硬互层反倾边坡倾倒破坏机制及稳定性研究[D]. 天津: 河北工业大学, 2021: 1-93. [XIE Zhouzhou. Study on the toppling failure mechanism and stability of the anti-dip soft-hard interbedded rock slope [D]. Tianjin: Hebei University of Technology, 2021: 1-93] DOI: 10.27105/d.cnki.ghbgu.2021.001183
[24] 黄达, 马昊, 孟秋杰, 等. 反倾软硬互层岩质边坡倾倒变形破坏机理与影响因素研究[J]. 工程地质学报, 2021, 29(3): 602-616. [HUANG Da, MA Hao, MENG Qiujie, et al. Study on toppling mechanism and affecting factors of anti-dip rock slopes with soft-hard interbedded structure [J]. Journal of Engineering Geology, 2021, 29(3): 602-616] DOI: 10.13544/j.cnki.jeg.2020-417
[25] 霍逸康, 石振明, 郑鸿超, 等. 软硬互层反倾岩质边坡稳定性影响因素分析及破坏模式研究[J]. 工程地质学报, 2021, 31(5): 1680-1688. [HUO Yikang, SHI Zhenming, ZHENG Hongchao, et al. Study on influence factors of stability and failure modes of anti-dip rock slope with soft and hard interbed [J]. Journal of Engineering Geology, 2021, 31(5): 1680-1688] DOI: 10.13544/j.cnki.jeg.2021-0159
[26] WANG Runqing, ZHENG Yun, CHEN Congxin, et al. Theoretical and numerical analysis of flexural toppling failure in soft-hard interbedded anti-dip rock slopes [J]. Engineering Geology, 2023, 312: 106923. DOI: 10.1016/j.enggeo.2022.106923
[27] LI Jinduo, GAO Yuan, YANG Tianhong, et al. Integrated simulation and monitoring to analyze failure mechanism of the anti-dip layered slope with soft and hard rock interbedding [J]. International Journal of Mining Science and Technology, 2023, 33(9): 1147-1164. DOI: 10.1016/j.ijmst.2023.06.006
[28] ARBANAS Z, BENAC C, GROSIC M. Remedial works on landslide in complex geological conditions [C]//17th International Conference on Soil Mechanics and Geotechnical Engineering, ICSMGE 2009, October 5, 2009 - October 9, 2009: Vol. 3. Alexandria, Egypt: IOS Press, 2009: 2638-2641.
[29] 朱伟, 王孔伟, 魏东, 等. 三峡库区忠县向斜内部滑坡空间分布特征[J]. 水土保持通报, 2018, 38(4): 98-102. [ZHU Wei, WANG Kongwei, WEI Dong, et al. Spatial distribution characteristics of internal landslides of Zhongxian County syncline in Three Gorges reservoir area [J]. Bulletin of Soil and Water Conservation, 2018, 38(4): 98-102] DOI: 10.13961/j.cnki.stbctb.2018.04.016
[30] 王汉臣, 邓华锋, 刘健, 等. 那伦水库料场边坡岩土体开挖变形及破坏特征[J]. 水电能源科学, 2024, 42(12): 82-86. [WANG Hanchen, DENG Huafeng, LIU Jian, et al. Relationship between rock-soil body structure and excavation deformation failure in quarry of Nalun reservoir [J]. Water Resources and Power, 2024, 42(12): 82-86] DOI: 10.20040/j.cnki.1000-7709.2024.20240108
[31] 鲍利发, 陈建林. 卡拉地下厂房位置及轴线方向选择 [C]//雅砻江虚拟研究中心, 2014年度学术年会论文集. 2014: 384-388. [BAO Lifa, CHEN Jianlin. Selection on the location and axis for the underground powerhouse of Kala Hydropower Station [C]// Yalong River Virtual Research Center, Proceedings of the 2014 annual academic conference of Yalong River Virtual Research Center. 2014: 384-388]
[32] 方丹, 韩钢, 鄢江平, 等. 卡拉水电站地下洞室群稳定性分析及洞室间距优化研究[J]. 长江科学院院报, 2023, 40(11): 93-101+110. [FANG Dan, HAN Gang, YAN Jiangping, et al. Stability analysis of underground caverns and optimization of cavern spacing of Kala hydropower station [J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(11): 93-101+110] DOI: 10.11988/ckyyb.20220649
[33] 李龙起, 李昌林, 何川, 等. 新型离心机串联模型试验方法及其初步应用研究[J]. 水利水电技术, 2019, 50(4): 200-204. [LI Longqi, LI Changlin, HE Chuan, et al. Study on method of a new centrifugal tandem model test and its preliminary application [J]. Water Resources and Hydropower Engineering, 2019, 50(4): 200-204] DOI: 10.13928/j.cnki.wrahe.2019.04.027
[34] 泮晓华, 薛雷, 秦四清, 等. 潜在锁固型滑坡的类型、形成条件和预判方法研究[J]. 工程地质学报, 2014, 22(6): 1159-1167. [PAN Xiaohua, XUE Lei, QIN Siqing, et al. Types, formation conditions and pre-dicision method for large landslides with potential locked patches [J]. Journal of Engineering Geology, 2014, 22(6): 1159-1167] DOI: 10.13544/j.cnki.jeg.2014.06.021
[35] 马文著, 徐衍, 李晓雷, 等. 基于黏聚力裂缝模型的反倾层状岩质边坡倾倒破坏模拟[J]. 水文地质工程地质, 2020, 47(5): 150-160. [MA Wenzhu, XU Yan, LI Xiaolei, et al. A numerical study of the toppling failure of an anti-dip layered rock slope based on a cohesive crack model [J]. Hydrogeology & Engineering Geology, 2020, 47(5): 150-160] DOI: 10.16030/j.cnki.issn.1000-3665.201909028