[1]王家柱,铁永波,徐 伟,等.考虑日降雨强度的滑坡双指标降雨预警模型研究[J].山地学报,2025,(1):157-166.[doi:10.16089/j.cnki.1008-2786.000883]
 WANG Jiazhu,TIE Yongbo,XU Wei,et al.A Dual-Indicator Rainfall Model for Landslide Early Warning Based on Daily Rainfall Intensity[J].Mountain Research,2025,(1):157-166.[doi:10.16089/j.cnki.1008-2786.000883]
点击复制

考虑日降雨强度的滑坡双指标降雨预警模型研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第1期
页码:
157-166
栏目:
山地灾害
出版日期:
2025-02-20

文章信息/Info

Title:
A Dual-Indicator Rainfall Model for Landslide Early Warning Based on Daily Rainfall Intensity
文章编号:
1008-2786-(20251-157-10)
作者:
王家柱123铁永波123徐 伟123白永健123张鸣之4
(1. 中国地质调查局成都地质调查中心(西南地质科技创新中心),成都610218; 2. 中国地质科学院探矿工艺研究所 自然资源部地质灾害风险防控工程技术创新中心,成都 611734; 3. 成都市地质环境监测站 自然资源部成都地质灾害野外科学观测研究站,成都 610000; 4. 中国地质环境监测院(自然资源部地质灾害技术指导中心)自然资源部地质灾害智能监测与风险预警工程技术创新中心,北京 100081)
Author(s):
WANG Jiazhu123 TIE Yongbo123 XU Wei123 BAI Yongjian123 ZHANG Mingzhi4
(1. Chengdu Center, China Geological Survey, Chengdu, 610218; 2. Engineering Technology Innovation Center of Geological DisasterRisk Prevention and Control, Ministry of Natural Resources, Institute of Prospecting Technology, Chinese Academy of Geological Sciences, Chengdu, 611734; 3. Chengdu Geological Hazard Field Scientific Observation and Research Station, Ministry of Natural Resources, Chengdu Institute of Geo-environment Monitoring, Chengdu, 610000; 4. Engineering Technology Innovation Center of Geological Hazards Intelligent Monitoring and Risk Early Warning, Ministry of Natural Resources, China Institute of Geo-environment Monitoring, Beijing 100081)
关键词:
降雨预警 I-D模型 双指标 滑坡 雨型
Keywords:
rainfall model I-D model double index landslide rainfall types
分类号:
P642
DOI:
10.16089/j.cnki.1008-2786.000883
文献标志码:
A
摘要:
基于降雨特征的滑坡预警模型构建是地质灾害防控体系建设的关键环节,其模型精度提升对地质灾害风险管控具有重要实践意义。传统单指标I(Intensity)-D(Duration)模型,多基于平均降雨强度(I)-历时(D)构建滑坡事件与降雨参数的统计关系确定临界阈值,但弱化了短时强降雨事件的触发作用。本研究以凉山州喜德县94个典型滑坡案例及其灾前降雨序列为研究样本,通过最小二乘回归建立降雨强度-历时(I-D)基础模型,在此基础上耦合当日降雨强度(D值为1)参数,创新性构建双指标协同预警模型。研究揭示:(1)喜德县滑坡降雨触发机制可划分为先雨后滑型、暴雨致滑型及连雨致滑型三类典型模式。(2)基于74个训练样本建立的I-D基础模型,其预警响应在暴雨型滑坡中呈现明显滞后性,通过引入当日降雨强度指标并采用双指标极值判别准则,验证集20个案例的红色预警占比提升至40%;(3)模型验证表明,双指标体系对先雨后滑型保持I-D模型的识别精度,而对暴雨致滑型的预警时效性提升2 d。研究成果不仅完善了降雨阈值理论体系,更为滑坡灾害防治提供了新的技术路径。
Abstract:
The construction of a landslide warning model based on rainfall characteristics constitutes a critical component of a geological disaster prevention and control system, with model accuracy enhancement holding significant practical implications for geological risk management. Traditional single-indicator I-D models, predominantly established through statistical relationships between average rainfall intensity(I)and duration(D)to determine critical thresholds, often overlook the triggering effects of short-duration rainstorm events.
In this study, 94 typical landslide occurrences and related pre-failure rainfall sequences in Xide County, Liangshan Prefecture, Sichuan Province, China, were used as research samples. A basic rainfall intensity-duration(I-D)model was established using least squares regression, and on this basis, the daily rainfall intensity(D value is 1)parameter was coupled to innovatively construct a dual-indicator collaborative warning model.
(1)The rainfall-triggered landslide mechanisms in Xide County were classified into three typical patterns: antecedent rainfall-induced, rainstorm-induced slide, and prolonged rainfall-triggered slide.
(2)The I-D basic model established based on 74 training samples showed a significant lag in early warning response for rainstorm-induced landslides. By introducing the daily rainfall intensity indicator and adopting dual-indicator extreme value discrimination criteria, the proportion of red warnings in the validation set of 20 cases increased to 40%.
(3)By model validation tests, it confirmed that the dual-indicator system maintained I-D model recognition accuracy for antecedent rainfall-induced landslides, while the timeliness of warnings for rainstorm-induced landslides was improved by 2 days.
The research results not only improve the theoretical system of rainfall thresholds but also provide a new technical path for the prevention and control of landslide disasters.

参考文献/References:

[1] HUANG Faming, ZHANG Jing, ZHOU Chuangbing, et al. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction [J]. Landslides, 2020(1): 217-229. DOI: 10.1007/s10346-019-01274-9
[2] 宋宇飞, 曹琰波, 范文, 等. 基于贝叶斯方法的降雨诱发滑坡概率型预警模型研究[J]. 岩石力学与工程学报, 2023, 42(3): 558-574. [SONG Yufei, CAO Yanbo, FAN Wen, et al. Probabilistic early warning model for rainfall-induced landslides based on Bayesian approach [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 558-574] DOI: 10.13722/j.cnki.jrme.2022.0382
[3] 黄发明, 陈佳武, 范宣梅, 等. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模[J]. 地球科学, 2022, 47(12): 4609-4628. [HUANG Faming, CHEN Jiawu, FAN Xuanmei, et al. Logistic regression fitting of rainfall-induced landslide occurrence probability and continuous landslide hazard prediction modeling [J]. Earth Science: Journal of China University of Geoscience, 2022, 47(12): 4609-4628] DOI: 10.3799/dqkx.2021.164
[4] 吴益平, 张秋霞, 唐辉明, 等. 基于有效降雨强度的滑坡灾害危险性预警[J]. 地球科学(中国地质大学学报), 2014, 39(7): 889-895. [WU Yiping, ZHANG Qiuxia, TANG Huiming, et al. Landslide hazard warning based on effective rainfall intensity [J]. Earth science: Journal of China University of Geoscience, 2014, 39(7): 889-895] DOI: 10.3799/dqkx.2014.083
[5] 朱文慧, 晏鄂川, 邹浩, 等. 湖北省黄冈市降雨型滑坡气象预警判据[J]. 地质科技通报, 2022, 41(6): 45-53. [ZHU Wenhui, YAN Echuan, ZHOU Hao, et al. Meteorological early warning criterion of rainfall-induced landslide in Huanggang City, Hubei Province [J]. Bulletin of Geological Science and Technology, 2022, 41(6): 45-53] DOI: 10.19509/j.cnki.dzkq.2022.0132
[6] 周剑, 汤明高, 许强, 等. 重庆市滑坡降雨阈值预警模型[J]. 山地学报, 2022, 40(6): 847-858. [ZHOU Jian, TANG Minggao, XU Qiang, et al. Early warning model of rainfall-induced landslide in Chongqing of China based on rainfall threshold [J]. Mountain Research, 2022, 40(6): 847-858] DOI: 10.16089/j.cnki.1008-2786.000718
[7] 刘谢攀, 殷坤龙, 肖常贵, 等. 基于I-D-R阈值模型的滑坡气象预警[J]. 地球科学, 2024, 49(3): 1039-1051. [LIU Xiepan, YIN Kunlong, XIAO Changgui, et al. Meteorological early warning of landslide based on I-D-R threshold model [J]. Earth Science, 2024, 49(3): 1039-1051] DOI: 10.3799/dqkx.2022.233
[8] GODT J W, BAUM R L, SAVAGE W Z, et al. Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework [J]. Engineering Geology, 2008, 102(3-4): 214-226. DOI: 10.1016/j.enggeo.2008.03.019
[9] 李同录, 袁思凡, 徐家隆, 等. 降雨引起的两类不同浅层滑坡稳定性的计算模型——与“浅层黄土滑坡易发性评价: 以晋西黄土区蔡家川农地小流域为例”一文商榷[J]. 山地学报, 2023, 41(6): 916-925. [LI Tonglu, YUAN Sifan, XU Jialong, et al. Two different types of models for stability assessment of rainfall triggered shallow landslides: Discuss with the paper risk assessment of shallow loess landslides: Taking a small watershed of Caijiachuan farmland in the loess region of western Shanxi of China as an example [J]. Mountain Research, 2023, 41(6): 916-925] DOI: 10.16089/j.cnki.1008-2786.000797
[10] SATYANINGSIH R, JETTEN V, ETTEMA J, et al. Dynamic rainfall thresholds for landslide early warning in Progo Catchment, Java, Indonesia [J]. Natural Hazards, 2023, 119(3): 2133-2158. DOI: 10.1007/s11069-023-06208-2
[11] RANA H, BABU G L S. Regional back analysis of landslide events using TRIGRS model and rainfall threshold: An approach to estimate landslide hazard for Kodagu, India [J]. Bulletin of Engineering Geology and the Environment, 2022, 81(4): 160. DOI: 10.1007/s10064-022-02660-9
[12] KIM D, IM S, LEE S H, et al. Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRS model [J]. Journal of Mountain Science, 2010, 7(1): 83-91. DOI: 10.1007/s11629-010-1072-9
[13] GUZZETTI F, PERUCCACCI S, ROSSI M, et al. Rainfall thresholds for the initiation of landslides in central and southern Europe [J]. Meteorology and Atmospheric Physics, 2007, 98(3-4): 239-267. DOI: 10.1007/s00703-007-0262-7
[14] ROSI A, SEGONI S, CATANI F, et al. Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany(Italy)[J]. Journal of Geographical Sciences, 2012, 22(4): 617-629. DOI: 10.1007/s11442-012-0951-0
[15] MARTINOVIC' K, GAVIN K, REALE C, et al. Rainfall thresholds as a landslide indicator for engineered slopes on the Irish Rail network [J]. Geomorphology, 2018, 306: 40-50. DOI: 10.1016/j.geomorph.2018.01.006
[16] 刘海知, 徐辉, 包红军, 等. 区域降雨诱发滑坡阈值特征分析[J]. 自然灾害学报, 2021, 30(4): 181-190. [LIU Haizhi, XU Hui, BAO Hongjun, et al. Characteristics analysis of rainfall-induced threshold in local regions [J]. Journal of Natural Disasters, 2021, 30(4): 181-190] DOI: 10.13577 /j.jnd.2021.0420
[17] LAGOMARSINO D, SEGONI S, ROSI A, et al. Quantitative comparison between two different methodologies to define rainfall thresholds for landslide forecasting [J]. Natural Hazards and Earth System Sciences, 2015, 15(10): 2413-2423. DOI: 10.5194/nhess-15-2413-2015
[18] 夏梦想, 李远耀, 吴吉民, 等. 基于I-D统计模型的张家界市滑坡灾害降雨预警阀值研究[J]. 自然灾害学报, 2021, 30(4): 203-212. [XIA Mengxiang, LI Yuanyao, WU Jimin, et al. Research on rainfall early warning threshold of landslide disaster in Zhangjiajie City based on I-D statistical model [J]. Journal of Natural Disasters, 2021, 30(4): 203-212] DOI: 10.13577 /j.jnd.2021.0422
[19] ALEOTTI P. A warning system for rainfall-induced shallow failures [J]. Engineering Geology, 2004, 73(3-4): 247-265. DOI: 10.1016/j.enggeo.2004.01.007
[20] ZÊZERE J L, TRIGO R M, TRIGO I F. Shallow and deep landslides induced by rainfall in the Lisbon region(Portugal): Assessment of relationships with the North Atlantic Oscillation [J]. Natural Hazards and Earth System Sciences, 2005, 5(3): 331-344. DOI: 10.5194/nhess-5-331-2005
[21] HONG Yong, HIURA H, SHINO K, et al. The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan [J]. Landslides, 2005, 2(2): 97-105. DOI: 10.1007/s10346-004-0043-z
[22] SEGONI S, PICIULLO L, GARIANO S L. A review of the recent literature on rainfall thresholds for landslide occurrence [J]. Landslides, 2018, 15(8): 1483-1501. DOI: 10.1007/s10346-018-0966-4
[23] 龚泉冰, 殷坤龙, 肖常贵, 等. 基于I-D阈值的滑坡气象预警双指标模型[J]. 地质科技通报, 2024, 43(1): 262-274. [GONG Quanbing, YIN Kunlong, XIAO Changgui, et al. Double-index model of landslide meteorological warning based on the I-D threshold [J]. Bulletin of Geological Science and Technology, 2024, 43(1): 262-274] DOI: 10.19509/j.cnki.dzkq.tb20220254
[24] GLADE T, CROZIER M, SMITH P. Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical antecedent daily rainfall model [J]. Pure and Applied Geophysics, 2000, 157(6-8): 1059-1079. DOI: 10.1007/s000240050017
[25] 李长江, 麻土华, 李炜, 等. 滑坡频度-降雨量的分形关系[J]. 中国地质灾害与防治学报, 2010, 21(1): 87-93. [LI Changjiagn, MA Tuhua, LI Wei, et al. Fractal relation of landslide frequency and rainfall [J]. The Chinese Journal of Geological Hazard and Control, 2010, 21(1): 87-93] DOI: 10.16031/j.cnki.issn.1003-8035.2010.01.027
[26] 罗渝, 何思明, 何尽川. 降雨类型对浅层滑坡稳定性的影响[J]. 地球科学(中国地质大学学报), 2014, 39(9): 1357-1363. [LUO Yu, HE Siming, HE Jinchuan. Effect of rainfall patterns on stability of shallow landslide [J]. Earth Science: Journal of China University of Geosciences, 2014, 39(9): 1357-1363] DOI: 10.3799/dqkx.2014.118
[27] 张勇, 温智, 程英建. 四川巴中市滑坡灾害与降雨雨型关系探讨[J]. 水文地质工程地质, 2020, 47(2): 178-182. [ZHANG Yong, WEN Zhi, CHENG Yingjian. A discussion of relationship between landslide disaster and rainfall types in Bazhong of Sichuan [J]. Hydrogeology & Engineering Geology, 2020, 47(2): 178-182] DOI: 10.16030/j.cnki.issn.1000-3665.201906036
[28] GUZZETTI F, PERUCCACCI S, ROSSI M, et al. The rainfall intensity-duration control of shallow landslides and debris flows: An update [J]. Landslides, 2008, 5(1): 3-17. DOI: 10.1007/s10346-007-0112-1
[29] CAINE N. The rainfall intensity: Duration control of shallow landslides and debris flows [J]. Geografiska Annaler. Series A, Physical Geography, 1980, 62(1/2): 23-27. DOI: 10.1080/04353676.1980.11879996

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 06-16; 修回日期(Accepted date):2025- 02-10
基金项目(Foundation item): 自然资源部地质灾害智能监测与风险预警工程技术创新中心项目(TICGM-2023-09); 中国地质调查局成都地质调查中心“刘宝珺院士基金”; 四川省自然科学面上基金(2023NSFSC2086)。[Technology Innovation Center for Geohazard Monitoring and Risk Early Warning, Ministry of Natural Resources(TICGM-2023-09); Liu Baojun Academician Fund of Chengdu Center, China Geological Survey; Natural Science Foundation of Sichuan Province of China(2023NSFSC2086)]
作者简介(Biography): 王家柱(1992-),男,硕士,工程师,主要研究方向:地质灾害机理分析与监测预警。[WANG Jiazhu(1992-), male, M.Sc., engineer, research on mechanism analysis and early warning]Email:383001693@qq.com
更新日期/Last Update: 2025-01-30