[1]陈爱民,邓浩俊,严思维,等.蒋家沟5种植被土壤分形特征与养分关系[J].山地学报,2016,(03):290-296.[doi:10.16089/j.cnki.1008-2786.000130]
 CHEN Aimin,DENG Haojun,YAN Siwei,et al.Fractal Features of Soil and their Relatisn with Soil Fertility under Five Vegetation in Jiangjiagou Gully[J].Mountain Research,2016,(03):290-296.[doi:10.16089/j.cnki.1008-2786.000130]
点击复制

蒋家沟5种植被土壤分形特征与养分关系()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2016年03期
页码:
290-296
栏目:
山地生态和环境
出版日期:
2016-06-01

文章信息/Info

Title:
Fractal Features of Soil and their Relatisn with Soil Fertility under Five Vegetation in Jiangjiagou Gully
文章编号:
1008-2786-(2016)3-290-07
作者:
陈爱民1邓浩俊1严思维1林勇明12*张广帅1杜 锟1
1.福建农林大学林学院,福建 福州 350002;
2.福建省高校森林生态系统过程与经营重点实验室,福建 福州 350002
Author(s):
CHEN Aimin1DENG Haojun1YAN Siwei1LIN Yongming12ZHANG Guangshuai1DU Kun1
1.College of Forestry, Fujian Agriculture and Forestry University, Fujian Fuzhou 350002, China 2.Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fuzhou 350002, China
关键词:
土壤颗粒 分形维数 植被恢复
Keywords:
soil particle fractal dimension vegetation restoration
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000130
文献标志码:
A
摘要:
运用分形模型,对云南东川蒋家沟不同植被类型土壤颗粒的分形特征及其与土壤养分的相关性进行分析,结果表明:1. 5种植被类型土壤的分形维数不同,介于2.47~2.59,大小顺序依次为:花生>石榴>新银合欢>草地>坡柳,花生和石榴所代表的坡耕地的分形维数显著大于新银合欢、草地和坡柳所代表的植被恢复用地。2.分形维数与粘粒(<0.002 mm)、粉粒(0.002~0.05 mm)的含量呈极显著的正相关关系,坡耕地的粘粒、粉粒含量高于植被恢复用地。分形维数与土壤的有机质、全氮、水解氮含量呈显著负相关关系,与有效磷含量呈显著的正相关关系。植被恢复用地的有机质、全氮、水解氮含量均高于坡耕地,新银合欢的有机质、全氮、水解氮含量低于坡柳和草地,花生、新银合欢和石榴的有效磷含量高于坡柳和草地。3.分形维数能够反映土壤的颗粒粒径分布及养分状况,可作为评价蒋家沟土壤结构稳定性与土壤肥力的一个重要指标。因此,蒋家沟应减少耕作,加强植被恢复,植被类型以改善土壤结构、提高土壤肥力效果较佳的草本和灌木为主。
Abstract:
This paper studied the fractal characteristics of the soil particle and the correlation analysis between fractal features and soil fertility under different vegetation types in the Jiangjiagou Gully of Dongchuan,Yunnan,China by using fractal model. Results showed that: 1. The fractal dimension of different vegetation types was different, and the fractal dimension of five kinds of vegetation types ranged from 2.47 to 2.57. The fractal dimension of the soil particle of Arachis hypogaea land(AHD)was the highest, followed by Punica granatum land(PGL), leucaena leucocephala land(LLL), grassland(GL), dodonaea viscose land(DVL). The fractal dimension of slope cropland represented by the AHD and PGL was significantly bigger than that of vegetation restoration land represented by the LLL, GL and DVL. 2. There were highly significantly positive correlations between fractal dimension and contents of clay(<0.002 mm)and particle(0.002~0.05 mm). The content of clay and silt of slope cropland was higher than vegetation restoration land. And there were significantly negative correlations between fractal dimensions and contents of soil organic matter, total-N, and alkali-hydrolysable-N, however the correlation between fractal dimension and contents of available-P is significantly positive. The contents of organic matter, total-N and alkali-hydrolysable-N in vegetation restoration land were higher than farmland with the trend of LLL﹥DVL and GL, but the contents of available-P for AHD, LLL and PGL were higher than DVL and GL. 3. The distribution of the soil particle size and nutrient status can be reflected by the fractal dimension, and the fractal dimension can be an important indicator used to evaluate the stability of soil structure and soil fertility in the area with Jiangjiagou Gully. So we should focus on reducing the number of tillage and enforcing vegetation restoration. The effects that we optimized the soil structure and improved the soil fertility by DVL and GL were the best. So we should focus on herbaceous and shrub for vegetation restoration.

参考文献/References:

[1] 郭灵辉, 王道杰, 张云红, 等. 泥石流源区新银合欢林地土壤微团聚体分形特征[J]. 水土保持学报, 2010, 24(5): 243-247[Guo Linghui, Wang Daojie, Zhang Yunhong, et al. Fractal features of soil micro-aggregates under Leucaena leucocephala forest in debris flow source area [J]. Journal of Soil and Water Conservation, 2010, 24(5): 243-247]
[2] Neuman S P. Universal scaling of hydraulic conductivities and dispersivities in geologic media [J]. Water Resour. Res., 1990, 26: 1749-1758
[3] Rieu M, Sposito G. Fractal fragmentation, soil porosity and soil water properties: Application [J]. Soil Science Society of America Journal, 1991, 55(4): 1231-1238
[4] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征土壤的分形特征[J]. 科学通报, 1993, 38(20): 1896-1899[Yang Peiling, Luo Yuanpei, Shi yuanchun. Fractal feature of soil on expression by weight distribution of particle size [J]. Chinese Science Bulletin, 1993, 38(20): 1896-1899]
[5] 刘金福, 洪伟, 吴承祯. 中亚热带几种珍贵树种林分土壤团粒结构的分形维数[J]. 生态学报, 2002, 22(2): 197-205[Liu Jinfu, Hong Wei, Wu Chengzhen. Fractal feature of soil clusters under some precious hardwood stands in the central subtropical region, China [J]. Acta Ecologica Sinica, 2002, 22(2): 197-205]
[6] 龚伟, 胡庭兴, 王景燕, 等. 川南天然常绿阔叶林人工更新后土壤微团聚体分形特征研究[J]. 土壤学报, 2007, 44(3): 571-575[Gong Wei, Hu Tinxing, Wang Jingyan, et al. Study on fractal features of soil aggregate structure under natural evergreen broad leaved forest and artificial regenerations in southern Sichun Provice [J]. Acta Pedologica Sinica, 2007, 44(3): 571-575]
[7] Tyler S W, Wheat-craft S W. Application of fractal mathematics to soil water retention estimation [J]. Soil Sci. Soc. Am J., 1989, 53(4): 987-996
[8] 苏永中, 赵哈林. 科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J]. 生态学报, 2004, 24(1): 71-74[Su Yongzhong, Zhao Halin. Fractal feature of soil particle size distribution in the desertification process of the farmland in Horqin Sandy Land [J]. Acta Ecologica Sinica, 2004, 24(1): 71-74]
[9] 贾晓红,李新荣,李元寿.干旱沙区植被恢复过程中土壤颗粒分形特征[J].地理研究,2007,26(3):518-525[Jia Xiaohong, Li Xinrong, Li Yuanshou. Fractal dimension of soil particle size distribution during the process of vegetation restoration in arid sand dune area [J]. Geographical Research,2007,26(3):518-525]
[10] 封磊, 洪伟, 吴承祯, 等. 杉木—观光木混交林不同经营模式土壤团粒结构的分形特征[J]. 山地学报, 2004, 22(3): 315-320[Feng Lei, Hong Wei, Wu Chengzhen, et al. Fractal feature of soil aggregation in different management patterns of Chinese fir plantation mixed with Tsoongiodenron odorum. Journal [J]. Journal of mountain science, 2004, 22(3): 315-320]
[11] 淮态, 庞奖励, 文青,等. 不同灌溉方式下耕作土壤的分形特征研究[J]. 土壤通报, 2008, 39(5): 995-998[Huai Tai, Pang Jiangli, Wen Qing, et al. Fractal features of cultivated soils from different irrigation system [J]. Chinese Journal of Soil Science, 2008, 39(5): 995-998]
[12] 王景燕, 胡庭兴, 龚伟, 等. 川南坡地不同退耕模式对土壤团粒结构分形特征的影响[J]. 应用生态学报, 2010, 21(6): 1410-1416[Wang Jingyan, Hu Tingxin, Gong Wei, et al. Fractal features of soil aggregate structure in slope farmland with different de-farming patterns in south Sichuan Province of China [J]. Chinese Journal of Applied Ecology, 2010, 21(6): 1410-1416]
[13] 魏茂宏, 林慧龙. 江河源区高寒草甸退化序列土壤粒径分布及其分形维数[J]. 应用生态学报, 2014, 25(3): 679-686[Wei Maohong, Lin Huilong. Soil particle size distribution and its fractal dimension among degradation sequences of the alpine meadow in the source region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau, China [J]. Chinese Journal of Applied Ecology, 2014, 25(3): 679-686]
[14] 廖超林, 何毓蓉, 徐佩. 泥石流源地土壤团聚体抗蚀特征研究—以蒋家沟为例[J]. 地球与环境, 2005, 33(4): 65-69[Liao Chaolin, He Yurong, Xu Pei. A study on antierodibility of soil aggregates in debris flow provenance: a case study in Jiang Jiagou [J]. Earth and Environment, 2005, 33(4): 65-69]
[15] 张广帅, 邓浩俊, 林勇明, 等. 泥石流滩地不同植被类型土壤肥力质量综合评价[J]. 福建林学院学报, 2014, 34(3): 214-219[Zhang Guangshuai, Deng Haojun, Lin Yongming, et al. Comprehensive estimation of soil fertility in different land use types of debris flow waste-shoal land [J]. Journal of Fujian College of Forestry, 2014, 34(3): 214-219]
[16] 张有富, 肖蔚, 陈明, 等. 云南小江泥石流频发区干热退化山地环境劣变与植被恢复途径[J]. 山地学报, 2001, 19(增刊): 88-91[Zhang Youfu, Xiao Wei, Chen Ming, et al. Environment degradation and vegetation rehabilitation approaches to debris flow-frequent occurrence area on xerothermic degraded mountain in Xiaojiang river [J]. Mountain Research, 2001, 19(Suppl.): 88-91]
[17] 谢贤健, 韦方强. 泥石流频发区不同盖度草地土壤颗粒的分形特征[J]. 水土保持学报, 2011, 25(4): 202-206[Xie Xianjian, Wei Fangqiang. Characteristics of soil particle fractal dimension under different coverage grassland of the area with high-frequency debris flow [J]. Journal of Soil and Water Conservation, 2011, 25(4): 202-206]
[18] 谢贤健, 韦方强. 泥石流频发区土地利用分形特征及稳定性研究[J]. 水土保持研究, 2011, 18(6): 167-171[Xie Xianjian, Wei Fangqiang. Study on fractal dimension and stability of land use types in the area with high-frequency debris flow [J]. Journal of Soil and Water Conservation, 2011, 18(6): 167-171]
[19] 张有富. 云南蒋家沟泥石流区干热退化山地引种拟金毛的技术与效果[J]. 山地学报, 2000, 18(6): 563-567[Zhang Youfu. Technique and results of common eulaliopsis' application on xerothermic degraded mountain in Jiangjiagou debris flow gully [J]. Mountain Research, 2000, 18(6): 563-567]
[20] 崔鹏, 王道杰, 韦方强. 干热河谷生态修复模式及其效应—以中国科学院东川泥石流观测站为例[J]. 中国水土保持科学, 2005, 3(3): 60-64[Cui Peng, Wang Daojie, Wei Fangqiang. Model and effect of ecological restoration of dry-hot valley: A case study of the CAS Dongchuan Debris Flow Observation Station [J]. Science of Water and Soil Conservation, 2005, 3(3): 60-64]
[21] 林勇明, 崔鹏, 葛永刚, 等. 泥石流频发区人工恢复新银合欢林种内竞争—以云南东川蒋家沟流域为例[J]. 北京林业大学学报, 2008, 30(3): 13-17[Lin Yongming, Cui Peng, Ge Yonggang, et al. Intraspecific competition of Leucaena leucocephala plantation in the area of high frequency debris flow: Taking the Jiangjiagou Gully as an example [J]. Journal of Beijing Forestry University, 2008, 30(3): 13-17]
[22] Tyler S W, Wheatcraft S W. Fractal scaling of soil particle size distributions: analysis and limitations [J]. Soil Science, 1992, 56: 362-369
[23] 王富, 贾志军, 董智, 等. 不同生态修复措施下水库水源涵养区土壤粒径分布的分形特征[J]. 水土保持学报, 2009, 23(5): 113-117[Wang Fu, Jia Zhijun, Dong Zhi, et al. Fractal features of soil particle size distribution on water source conservation areas under different measures of ecological restoration [J]. Journal of Soil and Water Conservation, 2009, 23(5): 113-117]
[24] 黄冠华, 詹卫华. 土壤颗粒的分形特征及其应用[J]. 土壤学报, 2002, 39(4): 490-497[Huang Guanhua, Zhan Weihua, Fractal property of soil particle size distribution and its application [J]. Acta Pedologica Sinica, 2002, 39(4): 490-497]
[25] 吴承祯, 洪伟. 不同经营模式土壤团粒结构的分形特征研究[J]. 土壤学报, 1999, 36(2): 162-167[Wu Chengzhen, Hong Wei. Study on fractal features of soil aggregate structure under different management patterns [J]. Acta Pedologica Sinica, 1999, 36(2): 162-167]
[26] 刘金福, 洪伟. 不同起源格氏栲林地的土壤分形特征[J]. 山地学报, 2001, 19(6): 565-570[Liu Jinfu, Hong Wei. Study on fractal feature of soil fertility under different original Castanopsis Kanakamii Stands [J]. Mountain Research, 2001, 19(6): 565-570]

相似文献/References:

[1]杨玉盛,陈光水,彭加才,等.不同栽杉代数土壤抗蚀性的变化[J].山地学报,1999,(02):68.
[2]葛璐月a,b,文星跃a,等.成都粘土与其下伏粘土粒度特征对比及古环境意义[J].山地学报,2019,(05):681.[doi:10.16089/j.cnki.1008-2786.000459]
 GE Luyuea,b,WEN Xingyuea,et al.Comparison of Particle Size Characteristics Between the Chengdu Clay and Its Underlying Clay: Implication for Paleoenvironment Changes[J].Mountain Research,2019,(03):681.[doi:10.16089/j.cnki.1008-2786.000459]
[3]张文旭,李建红,郭灵辉*,等.太行山油松人工林土壤微团聚体变化特征及其影响因素[J].山地学报,2019,(6):797.[doi:10.16089/j.cnki.1008-2786.000470]
 ZHANG Wenxu,LI Jianhong,GUO Linghui*,et al.Change Features of Soil Micro-aggregates of pinus tabulaeformis Plantation at Different Developmental Stages in the Southern Taihang Mountain and Its Relationship with Soil Nutrients[J].Mountain Research,2019,(03):797.[doi:10.16089/j.cnki.1008-2786.000470]

备注/Memo

备注/Memo:
收稿日期(Received date):2014-12-20; 改回日期(Accepted): 2015-05-30。
基金项目(Foundation item):国家自然科学基金项目(41201564); 福建农林大学林学院青年科研基金项目(6112C039Q)。[National Natural Science Foundation of China(41201564); the Youth Science and Technology Foundation of Foculty of Forestry, Fujian Agriculture and Forestry University(6112C039Q).]
作者简介(Biography):陈爱民(1991-), 男, 安徽六安人, 硕士研究生, 主要研究方向恢复生态学。 [Chen Aimin, male, born in 1991, Luan of Anhui province,MS.C candidate, mainly engaged in restoration ecology.] E-mail: 993407091@qq.com
*通信作者(Corresponding author): 林勇明(1982-), 男, 福建福安人, 博士, 副教授, 主要研究方向:恢复生态学。 [Lin Yongming, male, born in 1982, Fuan of Fujian province,Ph.D, mainly interested in restoration ecology.] E-mail:monkey1422@163.com
更新日期/Last Update: 2016-05-30