[1]杨红娟,韦方强,胡凯衡.泥石流浆体黏度计算中最大体积分数的确定[J].山地学报,2018,(03):382-390.[doi:10.16089/j.cnki.1008-2786.000334]
 YANG Hongjuan,WEI Fangqiang,HU Kaiheng.Determination of the Maximum Packing Fraction for Calculating Slurry Viscosity of Debris Flow[J].Mountain Research,2018,(03):382-390.[doi:10.16089/j.cnki.1008-2786.000334]
点击复制

泥石流浆体黏度计算中最大体积分数的确定()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2018年03期
页码:
382-390
栏目:
山地灾害
出版日期:
2018-05-30

文章信息/Info

Title:
Determination of the Maximum Packing Fraction for Calculating Slurry Viscosity of Debris Flow
文章编号:
1008-2786-(2018)3-382-09
作者:
杨红娟12韦方强3胡凯衡2
1.中国科学院山地灾害与地表过程重点实验室,成都 610041; 2.中国科学院、水利部成都山地灾害与环境研究所,成都 610041; 3.中国科学院重庆绿色智能技术研究院,重庆 400714
Author(s):
YANG Hongjuan12 WEI Fangqiang3 HU Kaiheng2
1.Key Laboratory of Mountain Hazards and Earth Surface Process, Chinese Academy of Sciences, Chengdu 610041, China; 2.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; 3.Chongqing Institute of Green and I
关键词:
泥石流 浆体 黏度 最大体积分数 宾汉模型
Keywords:
debris flow slurry viscosity maximum packing fraction Bingham model
分类号:
TV144; P642.23
DOI:
10.16089/j.cnki.1008-2786.000334
文献标志码:
A
摘要:
泥石流浆体的黏度是泥石流运动模型中的重要参数。利用相对黏度-颗粒体积分数的计算方法得到浆体黏度需要最大体积分数这一关键参数。本文利用不同来源泥石流堆积物中的细颗粒部分配置浆体开展流变实验,研究最大体积分数的确定方法。首先利用Anton Paar MCR301流变仪的同心圆筒系统测量每个细颗粒土体在不同颗粒体积分数下的流变曲线,通过宾汉模型得到各样品的塑性黏度,进而计算其与同温度下清水的相对黏度。然后利用6个应用较为广泛的相对黏度-颗粒体积分数计算方法对实验数据进行拟合,对各方法拟合的最大体积分数进行比较,分析其与细颗粒土体的特征体积分数(随机疏松堆积体积分数、随机密实堆积体积分数、击实体积分数、沉积稳定体积分数)的关系。结果显示对于同一土体配置的浆体,不同计算方法拟合的最大体积分数有所不同,但是同一种方法得到的不同土体的最大体积分数与土体的击实体积分数存在显著的线性关系,据此建立了各计算方法中最大体积分数的经验计算式。此外还建立了浆体相对黏度与颗粒体积分数、击实体积分数之间的指数关系式,该式可用于估算中等浓度和高浓度浆体与清水的相对黏度。
Abstract:
The slurry viscosity is an important parameter for the numerical simulation of debris flows.It is usually calculated by formulas which define the relationship between relative viscosity(ηr)and particle volume fraction(φ).However, the maximum packing fraction(φm)is pre-requisite when using these formulas.It represents the solid fraction at which the relative viscosity approaches infinity.To study the method for determining the maximum packing fraction, fine particle samples(≤1 mm)collected at nine debris-flow gullies, most of which were located in the area affected by the Wenchuan Earthquake, were used to perform rheological tests.The median grain size of the geo-materials ranged from 0.011 to 0.081 mm.Slurries with different solid concentrations were prepared for each type of sample.The shear stress-rotational speed curves were measured using the concentric cylinder system of an Anton Paar MCR301 rheometer, and they were further used to derive the plastic viscosity with the Bingham model.Then the relative viscosity was computed as the ratio of the plastic viscosity of the slurry to the viscosity of water measured at a same temperature.Six widely used ηr-φ formulas were finally utilized to derive φm for each sample based on the associated experimental data.Values of φm obtained from different formulas were examined.The relations between φm and some characteristic solid fractions of the experimental samples, including random loose packing fraction, random close packing fraction, compaction fraction, and deposition fraction, were also analyzed.It revealed that different ηr-φ formulas would give different φm values for the same geo-material.However, a linear relationship was found between φm and the compaction fraction for a given ηr-φ formula.Consequently, empirical relationships had been established to estimate the φm parameter in ηr-φ formulas employed in the present study.Moreover, an exponential relationship was found between ηr and φ/φCP.These findings are expected to be useful in estimating the plastic viscosity of mud slurries with medium to high concentrations.

参考文献/References:

[1] 舒安平,张志东,王乐,等.基于能量耗损原理的泥石流分界粒径确定方法[J].水利学报,2008,38(3):257-263 [SHU Anping, ZHANG Zhidong, WANG Le, et al.Method for determining the critical grain size of viscous debris flow based on energy dissipation principle [J].Shuili Xuebao, 2008, 38(3): 257-263]
[2] KONIJN B J, SANDERINK O B J, KRUYT N P.Experimental study of the viscosity of suspensions: effect of solid fraction, particle size and suspending liquid [J].Powder Technology, 2014, 266: 61-69
[3] SHEWAN H M, STOKES J R.Analytically predicting the viscosity of hard sphere suspensions from the particle size distribution [J].Journal of Non-Newtonian Fluid Mechanics, 2015, 222: 72-81
[4] PEDNEKAR S, CHUN J, MORRIS J F.Bidisperse and polydisperse suspension rheology at large solid fraction [J].Journal of Rheology, 2018, 62(2): 513-526
[5] SENGUN M Z, PROBSTEIN R F.Bimodal model of slurry viscosity with application to coal-slurries.Part 2.High shear limit behavior [J].Rheologica Acta, 1989, 28(5): 394-401
[6] SHAPIRO A P, PROBSTEIN R F.Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions [J].Physical Review Letters, 1992, 68(9): 1422-1425
[7] QI F, TANNER R I.Random close packing and relative viscosity of multimodal suspensions [J].Rheologica Acta, 2012, 51(4): 289-302
[8] KAMIEN R D, LIU A J.Why is random close packing reproducible [J].Physical Review Letters, 2007, 99(15): 155501
[9] OUCHIYAMA N, TANAKA, T.Porosity of a mass of solid particles having a range of sizes [J].Industrial & Engineering Chemistry, Fundamentals, 1981, 20(1): 66-71
[10] LEE D I.Packing of spheres and its effect on the viscosity of suspensions [J].Journal of Paint Technology, 1970, 42: 579-587
[11] 刘猛,陈良勇,段钰锋.煤浆浓度和颗粒分布对煤浆黏度预测的影响[J].燃料化学学报,2009,37(3):266-270 [LIU Meng, CHEN Liangyong, DUAN Yufeng.Influence of concentration and particle size distribution on viscosity prediction of coal slurry [J].Journal of Fuel Chemistry and Technology, 2009, 37(3): 266-270]
[12] PATTON T C.Paint flow and pigment dispersion: a rheological approach to coating and ink technology [M].New York: John Wiley & Sons Incorporation, 1979: 150
[13] DABAK T, YUCEL O.Shear viscosity behaviour of highly concentrated suspensions at low and high shear rates [J].Rheologica Acta, 1986, 25(5): 527-533
[14] 南京水利科学研究院.土工试验规程SL237-1999[S].北京:中国水利水电出版社,1999:97-104 [Nanjing Hydraulic Research Institute.Soil test procedure SL237-1999 [S].Beijing: China WaterPower Press, 1999: 97-104]
[15] 倪晋仁,王光谦.泥石流的结构两相流模型:I.理论[J].地理学报,1998,53(1):66-76 [NI Jinren, WANG Guangqian.Conceptual two-phase flow model of debris flow: I.theory [J].Acta Geographica Sinica, 1998, 53(1): 66-76]
[16] MARCHESINI F H, NACCACHE M F, ABDU A, et al.Rheological characterization of yield-stress materials: flow pattern and apparent wall slip [J].Applied Rheology, 2015, 25: 1-10
[17] COUSSOT P, LAIGLE D, ARATTANO M, et al.Direct determination of rheological characteristics of debris flow [J].Journal of Hydraulic Engineering, 1998, 124(8): 865-868
[18] 王裕宜,詹钱登,严璧玉,等.泥石流体的流变特性与运移特征[M].长沙:湖南科学技术出版社,2014:141-143 [WANG Yuyi, ZHAN Qiandeng, YAN Biyu, et al.Debris-flow rheology and movement [M].Changsha: Hunan Science and Technology Press, 2014: 141-143]
[19] O'BRIEN J S, JULIEN P Y.Laboratory analysis of mudflow properties [J].Journal of Hydraulic Engineering, 1988, 114(8): 877-887
[20] MAJOR J J, PIERSON T C.Debris flow rheology: experimental analysis of fine-grained slurries [J].Water Resources Research, 1992, 28(3): 841-857
[21] SOSIO R, CROSTA G B.Rheology of concentrated granular suspensions and possible implications for debris flow modeling [J].Water Resources Research, 2009, 45: W03412
[22] KRIEGER I M, DOUGHERTY T J.A mechanism for non-Newtonian flow in suspensions of rigid spheres [J].Transactions of the Society of Rheology, 1959, 3: 137-148
[23] CHONG J S, CHRISTIANSEN E B, BAER A D.Rheology of concentrated suspensions [J].Journal of Applied Polymer Science, 1971, 15(8): 2007-2021
[24] LIU D M.Particle packing and rheological property of highly-concentrated ceramic suspensions: φm determination and viscosity prediction [J].Journal of Materials Science, 2000, 35(21): 5503-5507
[25] ZARRAGA I E, HILL D A, LEIGHTON Jr D T.The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids [J].Journal of Rheology, 2000, 44(2): 185-220
[26] HORRI B A, RANGANATHAN P, SELOMULYA C, et al.A new empirical viscosity model for ceramic suspensions [J].Chemical Engineering Science, 2011, 66(12): 2798-2806
[27] EINSTEIN A.Eine neue bestimmung der moleküldimensionen [J].Annalen der Physik, 1906, 324(2): 289-306
[28] HONEK T, HAUSNEROVA B, SAHA P.Relative viscosity models and their application to capillary flow data of highly filled hard-metal carbide powder compounds [J].Polymer Composites, 2005, 26(1):29-36
[29] BLISSETT R S, ROWSON N A.An empirical model for the prediction of the viscosity of slurries of coal fly ash with varying concentration and shear rate at room temperature [J].Fuel, 2013, 111: 555-563
[30] VU T S, OVARLEZ G, CHATEAU X.Macroscopic behavior of bidisperse suspensions of noncolloidal particles in yield stress fluids [J].Journal of Rheology, 2010, 54(4): 815-833

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(03):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(03):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(03):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(03):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(03):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(03):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(03):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(03):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(03):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(03):495.

备注/Memo

备注/Memo:
收稿日期(Received date):2017-09-25; 改回日期(Accepted date):2018-06-15
基金项目(Foundation item):国家自然科学基金项目(41201011)。[National Natural Science Foundation of China(41201011)]
作者简介(Biography):杨红娟(1982-),女,河南许昌人,副研究员,主要研究方向:山地灾害基础理论。[YANG Hongjuan(1982-),female,born in Xuchang,Henan province,associate professor,research on mountain hazards.] E-mail:yanghj@imde.ac.cn
更新日期/Last Update: 2018-05-30