参考文献/References:
[1] 舒安平,张志东,王乐,等.基于能量耗损原理的泥石流分界粒径确定方法[J].水利学报,2008,38(3):257-263 [SHU Anping, ZHANG Zhidong, WANG Le, et al.Method for determining the critical grain size of viscous debris flow based on energy dissipation principle [J].Shuili Xuebao, 2008, 38(3): 257-263]
[2] KONIJN B J, SANDERINK O B J, KRUYT N P.Experimental study of the viscosity of suspensions: effect of solid fraction, particle size and suspending liquid [J].Powder Technology, 2014, 266: 61-69
[3] SHEWAN H M, STOKES J R.Analytically predicting the viscosity of hard sphere suspensions from the particle size distribution [J].Journal of Non-Newtonian Fluid Mechanics, 2015, 222: 72-81
[4] PEDNEKAR S, CHUN J, MORRIS J F.Bidisperse and polydisperse suspension rheology at large solid fraction [J].Journal of Rheology, 2018, 62(2): 513-526
[5] SENGUN M Z, PROBSTEIN R F.Bimodal model of slurry viscosity with application to coal-slurries.Part 2.High shear limit behavior [J].Rheologica Acta, 1989, 28(5): 394-401
[6] SHAPIRO A P, PROBSTEIN R F.Random packings of spheres and fluidity limits of monodisperse and bidisperse suspensions [J].Physical Review Letters, 1992, 68(9): 1422-1425
[7] QI F, TANNER R I.Random close packing and relative viscosity of multimodal suspensions [J].Rheologica Acta, 2012, 51(4): 289-302
[8] KAMIEN R D, LIU A J.Why is random close packing reproducible [J].Physical Review Letters, 2007, 99(15): 155501
[9] OUCHIYAMA N, TANAKA, T.Porosity of a mass of solid particles having a range of sizes [J].Industrial & Engineering Chemistry, Fundamentals, 1981, 20(1): 66-71
[10] LEE D I.Packing of spheres and its effect on the viscosity of suspensions [J].Journal of Paint Technology, 1970, 42: 579-587
[11] 刘猛,陈良勇,段钰锋.煤浆浓度和颗粒分布对煤浆黏度预测的影响[J].燃料化学学报,2009,37(3):266-270 [LIU Meng, CHEN Liangyong, DUAN Yufeng.Influence of concentration and particle size distribution on viscosity prediction of coal slurry [J].Journal of Fuel Chemistry and Technology, 2009, 37(3): 266-270]
[12] PATTON T C.Paint flow and pigment dispersion: a rheological approach to coating and ink technology [M].New York: John Wiley & Sons Incorporation, 1979: 150
[13] DABAK T, YUCEL O.Shear viscosity behaviour of highly concentrated suspensions at low and high shear rates [J].Rheologica Acta, 1986, 25(5): 527-533
[14] 南京水利科学研究院.土工试验规程SL237-1999[S].北京:中国水利水电出版社,1999:97-104 [Nanjing Hydraulic Research Institute.Soil test procedure SL237-1999 [S].Beijing: China WaterPower Press, 1999: 97-104]
[15] 倪晋仁,王光谦.泥石流的结构两相流模型:I.理论[J].地理学报,1998,53(1):66-76 [NI Jinren, WANG Guangqian.Conceptual two-phase flow model of debris flow: I.theory [J].Acta Geographica Sinica, 1998, 53(1): 66-76]
[16] MARCHESINI F H, NACCACHE M F, ABDU A, et al.Rheological characterization of yield-stress materials: flow pattern and apparent wall slip [J].Applied Rheology, 2015, 25: 1-10
[17] COUSSOT P, LAIGLE D, ARATTANO M, et al.Direct determination of rheological characteristics of debris flow [J].Journal of Hydraulic Engineering, 1998, 124(8): 865-868
[18] 王裕宜,詹钱登,严璧玉,等.泥石流体的流变特性与运移特征[M].长沙:湖南科学技术出版社,2014:141-143 [WANG Yuyi, ZHAN Qiandeng, YAN Biyu, et al.Debris-flow rheology and movement [M].Changsha: Hunan Science and Technology Press, 2014: 141-143]
[19] O'BRIEN J S, JULIEN P Y.Laboratory analysis of mudflow properties [J].Journal of Hydraulic Engineering, 1988, 114(8): 877-887
[20] MAJOR J J, PIERSON T C.Debris flow rheology: experimental analysis of fine-grained slurries [J].Water Resources Research, 1992, 28(3): 841-857
[21] SOSIO R, CROSTA G B.Rheology of concentrated granular suspensions and possible implications for debris flow modeling [J].Water Resources Research, 2009, 45: W03412
[22] KRIEGER I M, DOUGHERTY T J.A mechanism for non-Newtonian flow in suspensions of rigid spheres [J].Transactions of the Society of Rheology, 1959, 3: 137-148
[23] CHONG J S, CHRISTIANSEN E B, BAER A D.Rheology of concentrated suspensions [J].Journal of Applied Polymer Science, 1971, 15(8): 2007-2021
[24] LIU D M.Particle packing and rheological property of highly-concentrated ceramic suspensions: φm determination and viscosity prediction [J].Journal of Materials Science, 2000, 35(21): 5503-5507
[25] ZARRAGA I E, HILL D A, LEIGHTON Jr D T.The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids [J].Journal of Rheology, 2000, 44(2): 185-220
[26] HORRI B A, RANGANATHAN P, SELOMULYA C, et al.A new empirical viscosity model for ceramic suspensions [J].Chemical Engineering Science, 2011, 66(12): 2798-2806
[27] EINSTEIN A.Eine neue bestimmung der moleküldimensionen [J].Annalen der Physik, 1906, 324(2): 289-306
[28] HONEK T, HAUSNEROVA B, SAHA P.Relative viscosity models and their application to capillary flow data of highly filled hard-metal carbide powder compounds [J].Polymer Composites, 2005, 26(1):29-36
[29] BLISSETT R S, ROWSON N A.An empirical model for the prediction of the viscosity of slurries of coal fly ash with varying concentration and shear rate at room temperature [J].Fuel, 2013, 111: 555-563
[30] VU T S, OVARLEZ G, CHATEAU X.Macroscopic behavior of bidisperse suspensions of noncolloidal particles in yield stress fluids [J].Journal of Rheology, 2010, 54(4): 815-833
相似文献/References:
[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(03):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(03):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(03):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(03):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(03):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(03):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(03):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(03):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(03):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(03):495.