[1]季宪军,梁 瑛,潘华利,等.含水率对泥石流浆体力学特性影响实验研究[J].山地学报,2019,(01):70-77.[doi:10.16089/j.cnki.1008-2786.000400]
 JI Xianjun,LIANG Ying,PAN Huali,et al.Experimental Study on Influence of Water Content on Mechanical Properties of Debris Flow Slurry[J].Mountain Research,2019,(01):70-77.[doi:10.16089/j.cnki.1008-2786.000400]
点击复制

含水率对泥石流浆体力学特性影响实验研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年01期
页码:
70-77
栏目:
山地灾害
出版日期:
2019-03-10

文章信息/Info

Title:
Experimental Study on Influence of Water Content on Mechanical Properties of Debris Flow Slurry
文章编号:
1008-2786-(2019)1-070-08
作者:
季宪军1 梁 瑛1 潘华利2欧国强2*
1. 南阳理工学院,河南 南阳 473004; 2. 中国科学院、水利部成都山地灾害与环境研究所, 成都 610041
Author(s):
JI Xianjun12 LIANG Ying1 PAN Huali2 OU Guoqiang2*
1. Nanyan Institute of Technology, Nanyang 473004, China; 2. Institute of Mountain Hazards and Environment, Chinese Academy of Science, Chengdu 610041, China
关键词:
泥石流泥浆 旋转剪切试验 含水率 成都黏土
Keywords:
clay slurry rotational shear test moisture content Chengdu clay
分类号:
P642.2
DOI:
10.16089/j.cnki.1008-2786.000400
文献标志码:
A
摘要:
探讨含水率对泥石流浆体力学特性影响是泥石流运移过程研究的基础性内容。以成都龙泉区黏土为实验材料,配制11种不同含水率的泥浆,利用安东帕MCR301流变仪,对不同含水率泥浆开展两循环旋转剪切实验(每循环剪切过程分为增速剪切(0-30 s-1)和减速剪切(30-0 s-1)两阶段),分析含水率对泥浆剪切过程、剪应力变化过程、剪切应力峰值及灵敏度的影响。实验结果表明:①初剪应力峰值和复剪应力峰值与含水率呈幂律关系。②由于剪切过程的差异性导致含水率对泥浆的剪应力与剪切速率的影响也具有差异性:当含水率低于100%时,第一、第二循环各阶段剪切过程中剪切应力变化过程完全不重合,且初剪应力峰值和复剪应力峰值随含水率增大迅速降低,灵敏度随含水率的增加迅速减小到1; 当含水率高于100%时,第一、第二循环各阶段剪应力变化过程基本一致,含水率对应力峰值和泥浆灵敏度的影响可以忽略不计。③影响成都黏土泥浆剪切过程、剪切应力变化、剪应力峰值和灵敏度的含水率阈值是100% 。本文对成都区黏土泥浆开展了动态剪切试验,探讨了含水率对泥浆特性的影响,可为其他区域黏土特性的研究提供参考,具有重要的研究意义!
Abstract:
The influence of water content on the mechanical properties of mud is the basic content of the study on the moving process of debris flow disaster. Using the clay in Longquan District of Chengdu as the experimental material, 11 kinds of mud with different water content(50%, 57%, 63%, 67%, 72%, 80%, 101%, 131%, 182%, 302%, and 400%)were prepared. To analyze the effect of water content on mud shearing process, shear stress change process, shear stress peak and sensitivity, two cycles of rotary shearing experiments were carried out on mud with different moisture content by using Anton Paar MCR301 rheometer. Each cyclic shear process was divided into two stages: accelerated shear(0~30 s-1)and decelerated shear(30~0 s-1). The experimental results showed that: The peak shear stress of the first and of the second cycles had a strong power relationship with the moisture content. The influence of moisture content on the shear stress of slurry was different: The shear stress change processes were completely different in each stage of the first and the second rotary shearing process, and the shear stress peak value of the first and the second cycles decreased rapidly, and the sensitivity decreased rapidly to 1 with the increase of the moisture content, when the moisture content was lower than 100%. However, the change processes of shear stress in each stage of the first and second rotary shearing were basically the same, and the shear stress peak value of the first and the second cycles decreased slowly with the increase of moisture content, and the influence of moisture content on sensitivity of slurry could be ignored, when the moisture content was higher than 100%. This study also indicated that the moisture content threshold affecting Chengdu clay mud shear process, shear stress change, shear stress peak and sensitivity was 100%. In this paper, a dynamic shear tests were carried out on the clay slurry in Longquan District of Chengdu, and the influences of water content on the mud characteristics were fully discussed. It provided reference for the study of clay properties in other areas, and had important research significance.

参考文献/References:

[1] 余峙丹,张辉,郭荣芬.云南楚雄特大滑坡泥石流气象成因[J].气象科技,2010,38(1):136-140. [YU Zhidan, ZHANG Hui, GUO Rongfen. Analysis of meteorological causes of an exceptional landslide and debris flow event in Chuxiong[J]. Meteorological Science and Technology, 2010,38(1):136-140]
[2] 石建军,李保珠,李鹏,等.元谋县9·17特大泥石流特征及形成机理分析[J].地质论评,2018,64(03):665-673 [SHI Jianjun, LI Baozhu, LI Peng, et al. Analysis of characteristics and formation mechanism for the 9·17 giant debris flow in Yuanmou Country,Yunnan Province [J], Geological Review, 2018,64(03):665-673]
[3] 刘传正.贵州关岭大寨崩滑碎屑流灾害初步研究[J].工程地质学报.2010,18(5):623-630.[LU Chuanzheng. Preliminary findings on DaZhai landslide debris flow disaster in Guizhou province of June 28, 2010[J]. Journal of Engineering Geology, 2010,18(5):623-630]
[4] 沈寿长, 谢慎良. 泥石流体的结构模式和粗颗粒对泥浆体流变特性的影响[J].泥沙研究,1983(3): 12-19.[SHEN Shouchang, XIE Shenliang. Mode of structure of debris fluid and the effect of coarse grains on the rheological characteristics of slurry [J]. Journal of Sediment Research, 1983(3):12-19]
[5] 沈寿长.泥石流流变特性的试验研究[J].水利学报,1998(9):8-14.[SHEN Shouchang. Experiment of rheology of debris flow [J].Journal of Hydraulic Engineering,1998(9):8-14]
[6] 舒安平,张志东,王乐,等. 基于能量耗损原理的泥石流分界粒径确定方法[J].水利学报, 2008, 39(3): 257-263 [SHU Anping, ZHANG Zhidong, WANG Le, et al. Method for determining the critical grain size of viscous debris flow based on energy dissipation principle [J]. Journal of Hydraulic Engineering, 2008, 39(3): 257-263]
[7] 王裕宜. 泥石流浆体的流变特征[J]. 泥沙研究, 1982(2):74-78.[WANG Yuyi. The rheological characteristics of debris flow slurry [J]. Journal of Sediment Research,1982(2):74-78]
[8] 王裕宜, 詹钱登, 邹仁元,等. 泥石流浆体屈服应力综合表达式的研究[J].自然灾害学报,1999,8(3):103-110. [WANG Yuyi, ZHAN Qiandeng, ZOU Renyuan, et al. Study on synthetical yield stress equation of debris flow slurry [J]. Journal of Natural Disasters, 1999,8(3): 103-110]
[9] 杨红娟, 胡凯衡, 韦方强. 泥石流浆体流变参数的计算方法及其扩展性研究[J]. 水利学报, 2013, 44(11):1338-1346.[YANG Hongjuan,HU Kaiheng,WEI Fangqiang.Methods for computing rheological parameters of debris flow slurry and their extensibilities[J].Journal of Hydraulic Engineering,2013, 44(11): 1338-1346]
[10] 杨红娟, 韦方强, 胡凯衡,等. 不同上限粒径泥石流浆体的流变参数变化规律[J]. 水利学报, 2016, 47(7):884-890.[YANG Hongjuan, WEI Fangqiang, HU Kaiheng, et al. Rheological parameters of debris flow slurries with different maximum grain sizes[J]. Journal of Hydraulic Engineering, 2016,47(7):884-890]
[11] 杨红娟,韦方强,胡凯衡.泥石流浆体黏度计算中最大体积分数的确定[J].山地学报,2018,36(3):382-390. [YANG Hongjuan, WEI Fangqiang, HU Kaiheng. Determination of the maximum packing fraction for calculating slurry viscosity of debris flow [J]. Mountain Research, 2018,36(3):382-390]
[12] 胡正红, 张婧, 刘兴年,等. 泥石流浆体流变特性影响因素试验研究[J].水力发电学报,2014, 33(2):131-136.[HU Zhenghong, ZHANG Jing, LIU Xingnian, et al. Experimental study on rheological properties factors of debris flow slurry[J].Journal of Hydroelectric Engineering, 2014,33(2): 131-136]
[13] 马煜,余斌.泥石流体屈服应力与黏土矿物关系的试验研究[J].科学技术与工程,2017,17(21):202-207.[MA Yu, YU Bin. The influence of clay minerals and yield stress of debris flow by experiments[J]. Science Technology and Engineering, 2017,17(21):202-207]
[14] 刘曙光.天然泥石流剪切应变特性试验研究[J].人民长江,2016,47(16):83-86.[LIU Shuguang. Test study on shear strain characteristics of debris flow [J]. Yangtze River, 2016,47(16):83-86]
[15] 赵志中, 乔彦松, 王燕,等. 成都平原红土堆积的磁性地层学及古环境记录[J].中国科学:D辑:地球科学, 2007,37(3):370-377.[ZHAO Zhizhong, QIAO Yansong, WANG Yan, et al. Magnetostratigraphic and paleoclimatic studies on the Red Earth Formation from the Chengdu Plain in Sichuan Province, China[J]. Chinese Science: D: Earth Science, 2007, 37(3):370-377]
[16] 应立朝, 梁斌, 王全伟,等. 成都平原区成都黏土的粒度特征及其成因意义[J]. 沉积与特提斯地质, 2012, 32(1):72-77. [YING Lichao, LIANG Bin, WANG Quanwei, et al. Grain size analysis and origin of the Chengdu clay from the Chengdu Plain, Sichuan[J]. Sedimentary Geology & Tethyan Geology, 2012, 32(1):72-77.
[17] 彭社琴, 赵其华, 黄润秋. 成都黏土动三轴试验研究[J].地质灾害与环境保护, 2002, 13(1):57-60.[PENG Sheqin, ZHAO Qihua, HUANG Runqiu. The dynamic triaxial test study of Chengdu-clay[J]. Journal of Geological Hazards & Environment Preservation, 2002, 13(1):57-60]
[18] 李冬, 岳大昌, 李明,等. 成都东郊膨胀土强度与含水率关系的试验研究[J]. 科学技术与工程, 2015, 15(6):254-257,265.[ LI Dong, YUE Dachang, LI Ming, et al. Test study on Chengdu expansive soils strength parameters with water contents[J]. Science Technology & Engineering, 2015,15(6):254-257,265]
[19] 张晓超, 许模. 成都裂隙性黏土流变特性试验[J].实验室研究与探索,2010,29(4):27-29,32.[ZHANG Xiaochao, XU Mo. Experimental study on rheological behaviors of Chengdu fissured clay[J]. Research & Exploration in Laboratory, 2010, 29(4):27-29,32]
[20] 南京水利科学研究院. 土工试验规程 SL237-1999[S]. 北京: 中国水利水电出版社, 1999:32.[Nanjing Hydraulic Research Institute. Soil test procedure SL237-1999[S]. Beijing: China WaterPower Press, 1999: 32]

备注/Memo

备注/Memo:
收稿日期(Received date):2017-12-28; 改回日期(Accepted date):2018-11-20
基金项目(Foundation item):国家自然科学基金面上项目(41672357,51679229,41672318)。[National Natural Science Foundation of China(41672357,51679229,41672318)]
作者简介(Biography):季宪军(1974-),男,河南人,博士、副教授,主要从事岩土工程教学与研究工作。[JI Xianjun(1974-),male, born in Henan province, Ph.D, associate professor, research on geotechnical engineering] E-mail:jifeng988@163.com
*通讯作者(Corresponding author):欧国强(1958-),男,四川人,博士,研究员,博士生导师,主要从事山地灾害动力学研究。[OU Guoqiang(1958-), male, Ph.D, professor, research on mountain disaster dynamics] E-mail:ougq@imde.ac.cn
更新日期/Last Update: 2019-01-30